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Automatic Anomaly Detection in Offshore Wind
SCADA Data

Steffen Dienst and Jonas Beseler

Abstract—We propose a computationally simple anomaly de-
tection method that assists operators of offshore wind parks with
monitoring the operation of wind turbines. Previously published
methods focus on creating high quality predictive models for
specific physical operational aspects of turbines, like power
production or temperatures of the gearbox in relation to wind
speed and other exogenous factors. SCADA systems of wind
turbines typically provide many more sensor data time series
than are being used for monitoring purposes. We show how
this data can be used to automatically learn a large number of
simple models that in sum can alert the operator about a variety
of potentially defect related changes in different components.
A number of different insights applicable to similar problems
are provided in the conclusions. The system was developed and
applied in an offshore wind park and is used to support predictive
maintenance.

I. INTRODUCTION

Operating a big number of wind power plants efficiently
is a challenging task. Each individual wind energy converter
(WEC) has can differ in several ways: structurally, current health
conditions of components and sensors and parametrization of
the controller. Physical inspections of WECs are expensive and
may not even be possible for longer stretches of time due to
weather related restriction. In offshore wind parks the problem is
even bigger. There is be only a limited number of opportunities
to fix any physical problems in an offshore wind turbine
throughout the year. These facts mean that monitoring and
comprehensive interpretation of the SCADA data produced by
these turbines is essential for long-term economic success. Only
if the operator is aware of defects or performance degradation
of components as early as possible, he can efficiently operate
the WEC.

The offshore wind park Global Tech I (GT1) is located about
140km of the german north-west coast and officially started
production in autumn of 2015. It comprises 80 WECs of type
Adwen AD 5-116 with a per turbine power rating of 5MW.

Figure 1 shows a schematic view of the GTI park topology
where each WEC is represented as a pie chart showing the
relative times of the day spent in a specific operation mode.

Each turbine is equipped with 313 different sensors that
log the minimum, maximum, average and standard deviation
for each 10 minutes interval. Additionally, there are several
counters as well as event logs. In case of an error a ring
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Fig. 1. Dashboard overview of the offshore park’s topology. The colored
arcs show the proportional time each power plant spent in a specific operation
mode. Yellow represents maintenance, light green stands for ’ready’ and dark
green means ’in production’.

memory provides details measurement data for each sensor
in a higher sampling rate of 10ms. Each WEC has its own
unique parametrization and is operated individually. Also, due
to the harsh environmental conditions present in an offshore
setting, sensors have a significant probability of breaking. In
our experience, at each given time up to 2% of all sensors may
be broken.

A. Problem Description
All these conditions present significant challenges when using

the measurement data to learn about the current health condition
of the WECs. Due to the remote location, the difficulties and
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costs involved in carrying out maintenances and repairs and
the size of potential economic losses in case of lost production
the operator was interested in using the SCADA data produced
by each turbine to get a better, more complete awareness of
any change in their health states. SCADA systems internally
already employ a number of rules and thresholds that monitor
different sensors with the main purpose of stopping the WEC
if a potentially damaging condition is observed. Thresholds
per sensor are insufficient, though. Many interesting changes,
like continuous temperature increases in bearings or slow
pressure losses typically manifest themselves within a normal
value range for the respective sensors. Thresholds alone are
insufficient.

Changes in the interaction of the WECs components that may
indicate defects were only visible through manual inspections
of sensor data visualizations by data analysts. These inspections
must inevitably be incomplete, as there are 313 ∗ 80 = 25.040
sensors available in the GT1 park.

The task posed was: Automatically identify individual WECs
with atypical measurements with high accuracy using only
existing operational SCADA data from wind turbines. From a
machine learning perspective this task can be formulated as:
How can a system learn to distinguish between "normal" and
"anomalous" operation of as many components in a WEC as
possible with the least amount of additional, manually added
knowledge? The main requirements for such a system were:

1) No/as little metadata as possible The system should
not need to know about the mechanical and electrical
processes or the components of a WEC.

2) No explicit, manual definition of "normal be-
haviour" per sensor In many cases the range of valid
values depends on the current operation mode. Also,
the range may change over time, for example due to
degradation or changes in the parametrization. Requiring
the operator to provide an explicit expectation per sensor
is not feasible.

3) Fast learning for quick iterations Parameters change,
components get swapped. In each case the algorithm
needs to relearn. Excessive earning times are not
feasible.

4) Efficient model application The system should not
require special hardware to run. Typical off-the-shelve
hardware in use by the operator should suffice.

5) Low false alert rate The operator is confronted with a
number of automatic warning and error log messages
per WEC and day. Any additional messages produced
should be as relevant as possible to be useful.

6) Complements SCADA alerts The manufacturer has a
number of internal checks in its system. Our anomaly
detection algorithm should not try to replicate these
rules but rather focus on monitoring as many previously
unobserved aspects of the WEC’s operation as possible.

B. Contributions
We presents an efficient and computationally light method to

automatically learn reference models for the majority of sensors
of a wind turbine. We then show how to use these models

to monitor the continuous stream of SCADA data to identify
anomalies by comparing sensor data with predictions made
by these models. We give details about the heuristics used to
identify the root causes for each anomaly. These anomalies get
presented to a data analyst who can use this information to
manually classify the changes and use this knowledge to reduce
the potential economic impact of component malfunctions. We
present a preliminary classification of behavioural changes
found in the WECs of the GTI park in the spring of 2016.
Finally, we list some lessons and experiences we learned from
applying the presented method for the purpose of enabling
predictive maintenance.

II. RELATED WORK

We do not focus on condition monitoring in the form of
vibration analysis of generators and gears, because these aspects
are well understood and the market offers a broad variety of
products. Rather, we are interested in using all SCADA data a
wind turbine can output to identify malfunctions the operator
might not be aware of, yet.

There are a number of published methods to analyze SCADA
data with the explicit goal of identifying malfunctioning
components in wind turbines [1]. They use machine learning
techniques like artificial neural networks [2], self-organizing
maps [3] or support vector machines [4]. Although the learning
capability of these methods are vast due to their proven
successes in learning non-linear relationships, they are also
computationally very demanding, which means a big upfront
hardware investment is needed and the learning time can be
easily in the order of days or weeks. A periodic relearning
of models due to degradation or changes of components as
well as parameter changes is necessary during the lifetime of a
WEC. The learning time is therefore an important, especially
if the number of models is large.

Also, the methods referenced typically focus on using models
that focus on specific physical behaviours of wind turbines [5]
[6] [7]. Among these the most prominent aspects which should
be monitored are wind power curves, followed by nacelle
misalignment. Both of these aspects have a direct negative
impact on the revenue due to the ongoing loss of power
production that can be observed if one of these two aspects
shows a malfunction.

In contrast to these previous works, we address the gap of
monitoring as many functional aspects of a wind turbine as
possible while still keeping requirements like memory usage,
computing power and computing time as low as possible. We
are aware of the fact, that each functional model created by
our method might possibly be improved by combining the
knowledge of experts in the application as well as the data
mining domain. However, we are not so much interested in
improving on individual model quality but rather in providing
automatic monitoring of as many aspects of a single turbine
as possible with as little effort as possible.

III. APPROACH

The problem can be restated as: Create an explicit model for
each individual sensor that predicts the expected value for each
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Fig. 2. Schematic representation of two LASSO regression models. Sensors
represent temperatures, speeds and voltages, the targets of the blue lines signify
the automatically chosen features, their width represents the regression weight.

time interval t using the measurements of a subset of all the
other sensors of the same time as well as of the most recent past
t− 1, t− 2 etc. We can then use these models to compare the
measurements at each time step with the predictions. In the case
of a significant divergence we have three possible explanations:
1. the model is wrong and the predictions irrelevant; 2. the
measurements indeed differ from the expectation indicating a
qualitative change in the behaviour of the component being
measured (the model is correct and the target sensor of the
model is the cause of the change); or 3. at least one of the
sensors used as an input of the model is defect.

As figure 3 shows, we employed a cyclical process through-
out our project that lead to higher quality results per iteration:
The creation of the models, their usage to create predictions
and identify divergences and the heuristics that interprets these
divergences to identify the most probable root cause are fully
automatic and will be described in more details in the following
subsections. The operator of the parks then gets the results
presented interactively. He can use different visualizations to
manually classify the changes found and decide, whether and
how to act upon them. The final step is feeding back findings
regarding the quality of the anomalies found into settings for
the model learning steps. These changes to the settings can
be excluding sensors from being used as targets or inputs in
models as well as changes to thresholds.

The main mechanism we used is multiple linear regression of
sensor data. This method is computationally light, but it can’t
capture non-linear relationships. Since we are not interested
in few but very accurate but rather in finding many models
representing the different functional aspects present in a wind
turbine, we found that the reduced accuracy of using linear
approximations does not hurt the usefulness of the method. The
regressions try to represent each sensor value as a weighted
sum of an adequate selection of all the other available sensor’s
values. Figure 2 shows a schematic view of the main idea
of these regression models. It shows two models, one for a
temperature sensor and one for a wind speed sensor.

A. LASSO-Regression
Multiple linear regression for applications with many input

features tends to produce over fitted models (low bias, high
variance). Therefore, an essential step to produce linear models
with adequate low variance feature selection is an essential step.
Tibshirani published a method called Least Absolute Shrinkage
and Selection Operator [8] that accomplishes both: it produces
a multiple linear regression with an automatic feature selection.
It does this via a regularization factor in the regression formula

Fig. 3. Our method follows a cyclic process: the models are learned using
the measurement data in a reference date range, the results are interpreted by
a data analyst and any necessary changes to the algorithm parameters lead to
a re-learning of models.

1, where d is the number of input dimensions, y the regression
target, X are the input values and λ the maximum sum of the
feature weights:

min
β ‖y −Xβ‖2s.t.

d∑
j=1

|βj | < λ (1)

The effect of λ is a shrinking of weights in β towards zero,
which effectively means that the majority of inputs will get
a zero weight, which means they are irrelavant to predict the
target value y.

Thanks to several improvements in the implementation of the
underlying optimization algorithm in [9] and [10] this method
can be used to create hundreds of individual LASSO regression
models per minute.

B. Model Learning
Our model learning method has two steps: derive additional

features (“virtual sensors”) from the sensor measurements and
then learn multiple individual LASSO models for each sensor.
Each model can use data of all sensors available. In addition,
we add time lagged versions of each sensors. This is useful for
physical processes that manifest themselves with time delays,
like for example temperature propagation in the nacelle or
pressure changes due to increases in currents of pumps.

For each sensor, we try to learn more than one model to
capture as many similarities between sensors as possible. To
avoid reusing the same preditive sensors, after having learned a
regression model we exclude the best predictors of this model
and run the model finding code again. If the resulting model’s
quality is too low, we discard this model.

Table I shows one learned model. The most prominent
relationship it captured is the direct linear dependency of
the current used by the coolant pump and the water pressure
produced. In addition, the algorithm selected other sensors
with decreasing weights, that don’t seem to be related to the
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TABLE I. EXAMPLE OF A LEARNED LASSO MODEL TO PREDICT THE
SENSOR "COOLANT PUMP MOTOR CURRENT 1". COLUMNS SHOW THE

SENSOR NAME OF THE PREDICTOR, THE TIME LAG APPLIED TO THE SENSOR
TIME SERIES AND THE RELATIVE WEIGHT β .

Name Time lag Relative weight
Coolant Pressure 1 0 min 0.8856

Inverter Case Temperature -20 min 0.0477

Temperature Drawing-Off Air -20 min 0.0176

Axis 3 Contouring Error -20 min 0.0133

Temperature Drawing-Off Air 0 min 0.0127

Temperature Drawing-Off Air -10 min 0.0083

Axis 3 Battery Discharge Current -20 min 0.0067

Axis 1 Battery Discharge Current -10 min 0.0047

water pumping process. This is purely because the learning
data available resulted in slight model quality improvements
if these sensors were used in the prediction. If these models
were used primarily to learn about the relationship of the
sensors and the underlying processes these additional predictor
were not benefitial. But, since we are interested in identifying
sensors with anomalous measurements, each additional model
that uses a sensor increases the chance, that this model will
produce diverging predictions which gives our root cause
finding heuristics more hints about the true culprit.

Algorithm 1 shows pseudo code for the details of the learning
step.

Algorithm 1 High-level algorithm - Learn models
1: Parameter |models| . how many models per sensor
2: Parameter quality . minimum R2 per regression model
3: procedure CREATEFEATURES(columns)
4: features← columns \ {filtered columns}
5: Add up redundant component measurements
6: Add non-linear features (squares, roots, logs,...)
7: Add lagged features (columns of time t−1, t−2...)
8: Store statistical informations for each feature (average,

standard deviation, extent,...)
9: return features

10: end procedure
11: procedure LEARNMODELS(columns, features)
12: |learned| = 0
13: quality = 1.0
14: loop∀c ∈ columns
15: while Qualitymodel > quality ∧ |learned| <
|models| do

16: model← RegressionLASSO(features, c)
17: quality ← r2 of model
18: features′ ← remove best predictor of model
19: |learned|++
20: end while
21: end loop
22: end procedure
23: procedure LEARN(columns)
24: features = CREATEFEATURES(columns)
25: return LEARNMODELS(columns, features)
26: end procedure

Fig. 4. Divergences between individual LASSO model predictions and real
measurements for one day. Each column represents a 10min interval, each row
shows the differences between a model prediction and a sensor value, blue
meaning too low, orange too high. The plot shows that there are multiple time
synchronized divergences starting at september, 16th, indicating a change in
the interplay of the WECs components in comparison to the reference time
interval used for model learning.

C. Root Cause Analysis

Figure 4 shows sample outputs of a selection of regression
models learned for one wind turbine. Each column of pixels
represents a 10 minutes interval, each row shows the differences
between an individual models’ prediction and the real sensor
value, blue meaning too low, orange too high. Starting at
noon in september, 16th there is a behavioural change in the
operation of the wind turbine, indicated by multiple models
that synchronously show large divergences between prediction
and measurement.

To transform the divergences observed to reportable anoma-
lies, first we need to detect the beginning of a new phase of
diverging models. Since the quality of the automatically learned
models may differ extensively the divergences observed may be
intermittent and not be related to real errors in the components.
Therefore, the algorithm only signals an ongoing divergence
if the absolute value of the residual, the difference between
model prediction and real measurement, is greate than a user
defined threshold. The threshold we use is a percentage of the
spread of values we observed in the learning time interval, so
it is a relative measure for each sensor.

In the second step we apply a heuristic which outputs the
most probable root cause for each diverging model. We can’t
simply assume that the sensor that is the target of the current
model is misbehaving. More often it is the case that a sensor
which is used as a predictor in other models causes them to
diverge.

The heuristic comprises mainly two rules: detect physical
sensor defects and identify qualitatively changed sensor mea-
surements. If a sensor has a hardware defect, meaning the sensor,
its electrical connection or the cable isolation is damaged, we
typically observe a combination of strongly shifted values and
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Fig. 5. Screenshot of the anomalies presentation view in the monitoring
application.

a reduced variance. We understand that this effect is the result
of the translation of analogue measurements to digital values
which results in the reporting of physically implausible values
because the currents and voltages the sensor observes are either
too low or too high in comparison to normal operation. We
detect these sensor defects by comparing the variance of the
measurements of each sensor with the variance observed in the
learning time interval of the model as well as comparing the
value range. If a sensor is stuck, the ratio of these values tends
to become abnormally small.

If the first rules is not sufficient to explain the divergence
of a single model the second rule is used. It acts on the
observation, that, if a component changes its behaviour its
sensor measurements it will have a high correlation with the
residual of each model this sensor gets used in. Normally, the
differences of a models predictions and the real measurements
are unexplained random noise without any discernible structure.
If a sensor has any visual changes in its behaviour these changes
will be visible in the "shape" of the residuals. The similarity
of the sensor’s values and the residual increases, which can be
observed as an increase in the correlation between these two.
If the correlation of a predictor with the residual of a model
is high it is flagged as a probable explanation of a diverging
model.

Both rules get applied to each diverging model. For each
sensor that is flagged as possibly changed we count the number
of distinct hints, where each model that outputs this sensor as
the most probable cause is one hint. If a sensor has more hints
than the user requires, it is flagged as anomalous and will be
reported to the user.

D. Result Presentation

The results are presented to the operator in a form similar to
figure 5. For every flagged anomaly the operator may directly
see the interactive measurements visualization tool to inspect
and compare sensor data. Also, the application shows a button
that presents more detailed outputs of the evaluation heuristics
of section III-C. This view is useful to either see details about
divergent models that have too few hints to be flagged as an
anomaly or to manually retrace the decisions made by the root
cause analysis heuristics.

IV. RESULTS

Of the 313 sensor per WEC, 250 were not constant when
the operating mode was "production". Constant sensors were
related to the braking system and other components unused
during normal operation, so they were excluded for learning
the behaviour of WECs during production.

Given access to a history of four calendar months we used
the algorithm to learn approximately 750 models per WEC,
an average of three different models per sensor. The average
learning time per WEC was approximately one minute. Many of
the relationships between sensor automatically discovered could
be manually validated by the operator. Models that were clearly
wrong were discarded and the misleading sensors excluded
from the model learning process (refer to figure 2 for details).
Reasons for wrong models were for example counters. They
were tended to be used to explain trends, because the were
monotonously increasing during the learning data time interval.
Afterwards, when using these models to predict sensor values
some of those counters were reset by the WEC’s controller,
which lead to the detection a large number of misleading
anomalies. We will test the usefulness of counters as soon as
a longer history of data is available.

The models learned were subsequently used to inform the
operator about changes in the WEC. Since we don’t have a
fully annotated dataset that lists every change that should have
been detected, we can’t give a detailed validation regarding the
recall of our method.

The precision of the results depends on the severity of the
detected change as indicated by the subjective evaluation of
the operator. The majority of anomalies could be explained
by sensor hardware defects. In fact, about 1-2% of all sensor
per WEC were defect at any given time. Some of the more
interesting anomalies detected lead to the discovery of leaks
in the coolant system, increasing temperature trends in rotor
bearings, erratic pressure measurements in the brake system
and misalignments of the nacelle relative to the wind. Many
of these detected anomalies were not previously known or
reported by the SCADA system.

All anomalies can be explained in terms of differences in the
operation of the WEC in comparison between the time interval
used for model learning and the most recent past. However,
not every change leads to an insight that suggests hardware
failures. Instead, they could be explained by having used a
non-representative learning time interval. Chapter V-A gives
more detailed explanations.

Overall, the automatic anomaly detection lead to a number
of actionable insights over the course of spring 2016.

V. CONCLUSIONS

The automatic anomaly detection algorithm proved useful
for detecting a number of previously unknown defects and
performance degradation in the Global Tech I offshore wind
park. Even though the core of the method is simple and
the approximations found will not be the best possible, the
results that were produced proved invaluable for improving
the efficiency of the predictive maintenance efforts of the GT1
offshore wind park.
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A. Lessons Learned

“Error free” reference date ranges are hard to find.
The park officially opened in September 2015. Since then,
parameters get changed on a near daily basis. Each new setting
may also change the relationship between different sensor. We
do not have a long data history, yet.
Not every model makes sense. Some sensors output by
the SCADA system represent parameter settings rather than
measurements. Trying to predict settings from measurements
lead to low quality models. We explicitely removed these
sensors from the model learning to increase the models quality.
The more models, the better. Some changes in the behaviour
of the WEC will affect several components in a similar way.
If we only learned the relationship between these components
we might not get an anomaly if there is a change related to it.
If we learn more than one model per sensor, we have a higher
chance of learning different interdependencies, which in turn
means a higher chance of anomalies.
Performant interactive data visualizations are essential.
The automatic detection of anomalies is just the first, but
an essential, step to identify problems in a WEC. Our system
does not know about the technical processes and physical
interdependencies of the turbines. This means, it can’t classify
the changes as erroneous or normal. This decision is up to the
data analyst. In our experience, low latency during interactive
investigations increases the chance that the data analyst can
find an interpretation of anomalies detected quickly.
Redundant components need to be added up. In our WECs
there are several redundant components like motors and pumps.
They are operated in an alternating fashion. For the purpose of
our method, they really represent one functional component of
the WEC. Since our method compares sensor time series for
each time step, we had to add up the sensor values of these
redundant components (for example we replaced the “motor
current oil pump A” and “motor current oil pump B” with their
sum).
Not all anomalies necessarily indicate a defect. A number
of anomalies detected were the result of having learned
from unrepresentative data due to the short history of the
offshore park. For example, the power usage of components
in the nacelle increased during cold weather periods, because
heating was activated. This heating was not active during our
reference time interval, so apparently the relationship between
the currents and other sensor were flagged as anomalous. Other
examples of anomalies that were not interesting were changes
in the distribution of voltages and temperatures, that could
be explained by parameter changes which lead to changed
operation modes.
Sensors are unreliable. Sensors develop malfunctions the same
way as any other hardware component of a WEC. We saw an
error probability of up to 2% per sensor at any given time.
The problem is, that the detection of errors relies on reliable
sensors in the first place. A high quality detection algorithm
for sensor defects proved essential for the viability of any
automatic anomaly detection procedure.
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