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Motivation

How can we increase the TRL of lidar-assisted control?
I adjust lidar data processing to control [EWEA 2015]
I test baseline feedforward for full load [EWEA 2015]
I test advanced feedforward control for transition region

Hardware setup 2015 at NWTC, Boulder
I CART 2, 42.7m rotor
I CART-SCADA: feedback(SWE) & supervisory(NREL)
I Avent 5-beam lidar: 5 points in 1.25 s, 10 range gates

I Real-time Gateway: feedforward & data processing

Objectives
I How can we realize a lidar-assisted feedforward controller in the transition region?
I What are the lessons learned from this field testing campaign?
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Controller Design
Differential flatness
I flatness is a system property: system inputs can be expressed by the flat output and its derivatives
I flatness-based control usually used for set point changes
I reduced wind turbine model is flat with flat output rotor speed Ω and tower displacement xT

Tower EQUILibrium Accommodation (TEQUILA)
I tower and rotor trajectories are planned online based on wind preview
I uses collective pitch and generator torque feedforward update

I minimizes tower motion during transitions between partial and full load
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Design of Flatness-Based Feedforward Controller

Based on inversion of
nonlinear 2 DOF model! θ

v0

xT

Ω
MG MG generator torque

θ pitch angle
Ω rotor speed
xT tower displacement
v0 rotor-effective wind

Original wind turbine model
I inputs: MG and θ
I outputs: Ω, Ω̇, xT, ẋT, ẍT
I disturbance: v0

⇒
Flat wind turbine model
I inputs: Ω, Ω̇, xT, ẋT, ẍT
I outputs: MG and θ
I disturbance: v0

Now we can directly impose the turbine’s dynamics!

... But how???

flat wind
turbine

wind
turbine

Ω, Ω̇,
xT, ẋT, ẍT

Ω, Ω̇,
xT, ẋT, ẍT

v0 v0

MG

θ

I trajectories for rotor and tower motion
I considering actuator constraints

→ static curves + 7 parameters for dynamics
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Simulation Study with Perfect Wind Preview
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I full FAST model of CART2
I EOG at rated wind speed
I perfect wind preview assumed

Flatness-based feedforward
I on top of feedback controller
I coordinated control behavior of

collective pitch and generator torque
I rotor and tower motion reduced at rated

Adjustments for lidar-based preview
Trajectory planning needs to deal with:
I measurement and model uncertainties
I delays in measurements and actuators
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Comparing Lidar and Turbine

Rotor effective wind speed signals
I from turbine data and dynamic model using torque balance
I from raw lidar data using wind field reconstruction methods
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Comparison over time
I larger trends similar
I smaller details differ

→ we need to filter out
uncorrelated frequencies

→ done by 2 parameters of
trajectory planning
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Tuning Flatness-Based Controller via Hybrid Simulations

collected data
CART2 & lidar

simulation optimizer

Trajectory Optimization

field
testing

rotor effective

wind speed signals

simulation

results

updated

parameters

optimized

parameters

Trajectory optimization
I 5 free tuning parameters
I cost = pitch activity + DEL

(tower & shaft) - energy yield
I reduction of tower motion at

low frequencies as expected
→ ready for field testing
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Visualization of Data Processing on Gateway
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Field Testing Results
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I overall improved
I higher variation at vrated

Pitch activity
I more action below vrated
I less action above vrated

Blade loads
I reduction at vrated
I not much effect elsewhere

I 8 hours of data compared across 45-second chunks by NREL

→ results in principle positive, but more testing necessary
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Conclusion
Objectives
I How can we realize a lidar-assisted feedforward controller in the transition region?
I What are the lessons learned from this field testing campaign?

Flatness-based control is an option ...
I can be combined with baseline feedback control and adaptive lidar data processing
I based on inversion of reduced nonlinear model to limit tower motion during transition
I tuning necessary with collected turbine and lidar data

... but we need to re-think the concept!
I highly dependent on feedback controller and very sensitive to wind speed offset
I tuning of trajectory planning is tedious and only optimal for recorded data
I independent real-time capable system (Gateway) between lidar and turbine is very helpful!
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Outlook

Multivariable extension based on simplified calculations [Schlipf, ACC 2016]

I linear feedforward control update of generator torque and pitch angle only in transition region
I can be combined with collective pitch feedforward control above rated wind speed
I avoids online trajectory planing by fixing motion, only one tuning parameter

Cooperation within IEA Wind Task 32 “Lidar”
Workshops to identify and mitigate barriers to the use of lidar:
I optimizing lidars for wind turbine control applications (June 2016)
I guidelines on how to use lidar in the load verification & certification process (2017)
I explore the benefits of lidar-assisted control for the cost of wind energy (2018)
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Thank you for your attention!
D. Schlipf et al.
E-Mail: david.schlipf@ifb.uni-stuttgart.de
www.uni-stuttgart.de/windenergie
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