

Field Testing of Flatness-Based Feedforward Control on the CART2

D. Schlipf^{1,2}, P. Fleming², S. Raach¹,
A. Scholbrock², F. Haizmann¹, H. Fürst¹, M. Boquet³, P. W. Cheng¹

¹Stuttgart Wind Energy ²National Renewable Energy Laboratory ³Avent Lidar Technology

> Wind Europe Summit 2016 September 28 Hamburg, Germany

Stuttgart Wind Energy @ Institute of Aircraft Design

How can we increase the TRL of lidar-assisted control?

- \triangleright adjust lidar data processing to control [EWEA 2015]
- \triangleright test baseline feedforward for full load [EWEA 2015]
- \blacktriangleright test advanced feedforward control for transition region

How can we increase the TRL of lidar-assisted control?

- \triangleright adjust lidar data processing to control [EWEA 2015]
- \triangleright test baseline feedforward for full load [EWEA 2015]
- \triangleright test advanced feedforward control for transition region

Hardware setup 2015 at NWTC, Boulder

- ► CART 2, 42.7 m rotor
- ▶ CART-SCADA: feedback(SWE) & supervisory(NREL)
- ▶ Avent 5-beam lidar: 5 points in 1.25 s, 10 range gates

How can we increase the TRL of lidar-assisted control?

- \triangleright adjust lidar data processing to control [EWEA 2015]
- \triangleright test baseline feedforward for full load [EWEA 2015]
- test advanced feedforward control for transition region

Hardware setup 2015 at NWTC, Boulder

- ► CART 2, 42.7 m rotor
- ▶ CART-SCADA: feedback(SWE) & supervisory(NREL)
- ▶ Avent 5-beam lidar: 5 points in 1.25 s, 10 range gates
- Real-time Gateway: feedforward & data processing

How can we increase the TRL of lidar-assisted control?

- \triangleright adjust lidar data processing to control $[EWEA 2015]$
- \triangleright test baseline feedforward for full load [EWEA 2015]
- \triangleright test advanced feedforward control for transition region

Hardware setup 2015 at NWTC, Boulder

- ► CART 2, 42.7 m rotor
- ▶ CART-SCADA: feedback(SWE) & supervisory(NREL)
- Avent 5-beam lidar: 5 points in 1.25 s, 10 range gates
- Real-time Gateway: feedforward & data processing

Objectives

- \blacktriangleright How can we realize a lidar-assisted feedforward controller in the transition region?
- \triangleright What are the lessons learned from this field testing campaign?

Content

- 1. [Controller Design](#page-6-0)
- 2. [Data Processing and Controller Tuning](#page-16-0)
- 3. [Field Testing Results](#page-20-0)
- 4. [Conclusion and Outlook](#page-24-0)

Controller Design

Differential flatness

- \blacktriangleright flatness is a system property: system inputs can be expressed by the flat output and its derivatives
- \blacktriangleright flatness-based control usually used for set point changes
- \blacktriangleright reduced wind turbine model is flat with flat output rotor speed Ω and tower displacement x_t

Controller Design

Differential flatness

- \triangleright flatness is a system property: system inputs can be expressed by the flat output and its derivatives
- \blacktriangleright flatness-based control usually used for set point changes
- \blacktriangleright reduced wind turbine model is flat with flat output rotor speed Ω and tower displacement x_t

Tower EQUILibrium Accommodation (TEQUILA)

- \triangleright tower and rotor trajectories are planned online based on wind preview
- \triangleright uses collective pitch and generator torque feedforward update

Controller Design

Differential flatness

- \triangleright flatness is a system property: system inputs can be expressed by the flat output and its derivatives
- \blacktriangleright flatness-based control usually used for set point changes
- \blacktriangleright reduced wind turbine model is flat with flat output rotor speed Ω and tower displacement x_t

Tower EQUILibrium Accommodation (TEQUILA)

- \triangleright tower and rotor trajectories are planned online based on wind preview
- \triangleright uses collective pitch and generator torque feedforward update
- minimizes tower motion during transitions between partial and full load

Based on inversion of nonlinear 2 DOF model!

- *M*^G generator torque
- *θ* pitch angle
- Ω rotor speed
- x_{T} tower displacement
- v_0 rotor-effective wind

Original wind turbine model

- **F** inputs: M_G and θ
- \blacktriangleright outputs: $\Omega, \dot{\Omega}, x_\mathsf{T}, \dot{x}_\mathsf{T}, \ddot{x}_\mathsf{T}$
- \blacktriangleright disturbance: v_0

Based on inversion of nonlinear 2 DOF model!

- *M*^G generator torque
- *θ* pitch angle
- Ω rotor speed
- x_{T} tower displacement
- v_0 rotor-effective wind

Original wind turbine model

- **F** inputs: M_G and θ
- \blacktriangleright outputs: $\Omega, \dot{\Omega}, x_\mathsf{T}, \dot{x}_\mathsf{T}, \ddot{x}_\mathsf{T}$
- \blacktriangleright disturbance: v_0

Flat wind turbine model

- \blacktriangleright inputs: $\Omega, \dot{\Omega}, x_{\mathsf{T}}, \dot{x}_{\mathsf{T}}, \ddot{x}_{\mathsf{T}}$
- \blacktriangleright outputs: $M_{\rm G}$ and θ
- \blacktriangleright disturbance: v_0

Based on inversion of nonlinear 2 DOF model!

⇒

- *M*^G generator torque
- *θ* pitch angle
- Ω rotor speed
- x_{T} tower displacement
- v_0 rotor-effective wind

Original wind turbine model

- **F** inputs: M_G and θ
- \blacktriangleright outputs: $\Omega, \dot{\Omega}, x_\mathsf{T}, \dot{x}_\mathsf{T}, \ddot{x}_\mathsf{T}$
- \blacktriangleright disturbance: v_0

Flat wind turbine model

- \blacktriangleright inputs: $\Omega, \dot{\Omega}, x_{\mathsf{T}}, \dot{x}_{\mathsf{T}}, \ddot{x}_{\mathsf{T}}$
- \blacktriangleright outputs: M_G and θ
- \blacktriangleright disturbance: v_0

Based on inversion of nonlinear 2 DOF model!

⇒

- *M*^G generator torque
- *θ* pitch angle
- Ω rotor speed
- x_{T} tower displacement
- v_0 rotor-effective wind

Original wind turbine model

- \blacktriangleright inputs: M_G and θ
- \blacktriangleright outputs: $\Omega, \dot{\Omega}, x_\mathsf{T}, \dot{x}_\mathsf{T}, \ddot{x}_\mathsf{T}$
- \blacktriangleright disturbance: v_0

Flat wind turbine model

- \blacktriangleright inputs: $\Omega, \dot{\Omega}, x_{\mathsf{T}}, \dot{x}_{\mathsf{T}}, \ddot{x}_{\mathsf{T}}$
- \blacktriangleright outputs: M_G and θ
- \blacktriangleright disturbance: v_0

\blacktriangleright trajectories for rotor and tower motion

- \triangleright considering actuator constraints
- \rightarrow static curves $+$ 7 parameters for dynamics

Simulation Study with Perfect Wind Preview

Environment

- \blacktriangleright full FAST model of CART2
- \blacktriangleright EOG at rated wind speed
- \triangleright perfect wind preview assumed

Simulation Study with Perfect Wind Preview

Environment

- \blacktriangleright full FAST model of CART2
- \blacktriangleright EOG at rated wind speed
- \triangleright perfect wind preview assumed

Flatness-based feedforward

- \triangleright on top of feedback controller
- \triangleright coordinated control behavior of collective pitch and generator torque
- \triangleright rotor and tower motion reduced at rated

Simulation Study with Perfect Wind Preview

[Field Testing of Flatness-Based Feedforward Control on the CART2](#page-0-0)

Environment

 OOP

- \blacktriangleright full FAST model of CART2
- \blacktriangleright EOG at rated wind speed
- \triangleright perfect wind preview assumed

Flatness-based feedforward

- \triangleright on top of feedback controller
- \triangleright coordinated control behavior of collective pitch and generator torque
- \triangleright rotor and tower motion reduced at rated

Adjustments for lidar-based preview

Trajectory planning needs to deal with:

- measurement and model uncertainties
- \blacktriangleright delays in measurements and actuators

 \circ

[Motivation](#page-1-0) [Controller](#page-6-0) [Tuning](#page-16-0) [Results](#page-20-0) [Conclusion](#page-24-0) 6/13

Comparing Lidar and Turbine

Rotor effective wind speed signals

- \triangleright from turbine data and dynamic model using torque balance
- \blacktriangleright from raw lidar data using wind field reconstruction methods

Comparing Lidar and Turbine

Rotor effective wind speed signals

- \triangleright from turbine data and dynamic model using torque balance
- \triangleright from raw lidar data using wind field reconstruction methods

Comparison over time

- \blacktriangleright larger trends similar
- \blacktriangleright smaller details differ
- we need to filter out uncorrelated frequencies
- \rightarrow done by 2 parameters of trajectory planning

Tuning Flatness-Based Controller via Hybrid Simulations

Tuning Flatness-Based Controller via Hybrid Simulations

Trajectory optimization

- \blacktriangleright 5 free tuning parameters
- \triangleright cost = pitch activity + DEL (tower & shaft) - energy yield
- \blacktriangleright reduction of tower motion at low frequencies as expected
- \rightarrow ready for field testing

Visualization of Data Processing on Gateway

Field Testing Results

Rotor speed regulation

- \triangleright overall improved
- \blacktriangleright higher variation at v_{rated}

 \triangleright 8 hours of data compared across 45-second chunks by NREL

Field Testing Results

 \triangleright 8 hours of data compared across 45-second chunks by NREL

Field Testing Results

 \triangleright 8 hours of data compared across 45-second chunks by NREL results in principle positive, but more testing necessary

Conclusion

Objectives

- \blacktriangleright How can we realize a lidar-assisted feedforward controller in the transition region?
- \triangleright What are the lessons learned from this field testing campaign?

Flatness-based control is an option ...

- \triangleright can be combined with baseline feedback control and adaptive lidar data processing
- \triangleright based on inversion of reduced nonlinear model to limit tower motion during transition

 v_{rated}

 x_{T}

tuning necessary with collected turbine and lidar data

Conclusion

Objectives

- \blacktriangleright How can we realize a lidar-assisted feedforward controller in the transition region?
- \triangleright What are the lessons learned from this field testing campaign?

Flatness-based control is an option ...

- \triangleright can be combined with baseline feedback control and adaptive lidar data processing
- based on inversion of reduced nonlinear model to limit tower motion during transition

 v_{rated}

Trajectory Optimization

simulation. results updated parameters

collected data

CART2 & lidar wind speed signals simulation results

rotor effective wind speed signals x_{T}

field testing

optimized parameters

 \triangleright tuning necessary with collected turbine and lidar data

... but we need to re-think the concept!

- \triangleright highly dependent on feedback controller and very sensitive to wind speed offset
- \triangleright tuning of trajectory planning is tedious and only optimal for recorded data
- \triangleright independent real-time capable system (Gateway) between lidar and turbine is very helpful!

Outlook

Multivariable extension based on simplified calculations [Schlipf, ACC 2016]

- \blacktriangleright linear feedforward control update of generator torque and pitch angle only in transition region
- \triangleright can be combined with collective pitch feedforward control above rated wind speed
- \triangleright avoids online trajectory planing by fixing motion, only one tuning parameter

Outlook

Multivariable extension based on simplified calculations [Schlipf, ACC 2016] $\Omega_{\rm G,rated}$

 \blacktriangleright linear feedforward control update of generator torque and pitch angle only in transition region

wind turbine

> task 32 lidar

 $\Omega_{\rm G}$

 $MESCAL$ v_0

 $\Delta\theta_{\rm FF}$ θ

 $M_{\rm G}$

FB $\theta_{\rm min}$

 $M_{\rm G,FF}$

−↑

iea wind

- can be combined with collective pitch feedforward control above rated wind speed
- avoids online trajectory planing by fixing motion, only one tuning parameter

Cooperation within IEA Wind Task 32 "Lidar"

Workshops to identify and mitigate barriers to the use of lidar:

- \triangleright optimizing lidars for wind turbine control applications (June 2016)
- guidelines on how to use lidar in the load verification $\&$ certification process (2017)
- explore the benefits of lidar-assisted control for the cost of wind energy (2018)

Thank you for your attention!

D. Schlipf et al. E-Mail: david.schlipf@ifb.uni-stuttgart.de www.uni-stuttgart.de/windenergie

Acknowledgments

This work was supported by the U.S. Department of Energy under Contract No. DE-AC36-08GO28308 with the National Renewable Energy Laboratory. Partial funding support from Karl Schlecht Foundation (KSG) is also gratefully acknowledged. Thanks to all persons from SWE, NREL, and Avent Lidar Technology who have been contributing to this field testing campaign.

