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Motivation

How can we increase the TRL of lidar-assisted control?

> adjust lidar data processing to control [EWEA 2015]
> test baseline feedforward for full load [EWEA 2015]
> test advanced feedforward control for transition region
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How can we increase the TRL of lidar-assisted control?
> adjust lidar data processing to control [EWEA 2015]
> test baseline feedforward for full load [EWEA 2015]
> test advanced feedforward control for transition regionA

Hardware setup 2015 at NWTC, Boulder

» CART 2, 42.7 m rotor

» CART-SCADA: feedback(SWE) & supervisory(NREL)
> Avent 5-beam lidar: 5 points in 1.255s, 10 range gates

turbine data

—
control inputs
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Motivation

How can we increase the TRL of lidar-assisted control?
> adjust lidar data processing to control [EWEA 2015]
> test baseline feedforward for full load [EWEA 2015]
> test advanced feedforward control for transition regionA

Hardware setup 2015 at NWTC, Boulder

» CART 2, 42.7 m rotor

» CART-SCADA: feedback(SWE) & supervisory(NREL)
> Avent 5-beam lidar: 5 points in 1.255s, 10 range gates
> Real-time Gateway: feedforward & data processing

Objectives

turbine data

—
control inputs

| raw lidar data

feedforward
updates

» How can we realize a lidar-assisted feedforward controller in the transition region?

> What are the lessons learned from this field testing campaign?
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Controller Design
Differential flatness

» flatness is a system property: system inputs can be expressed by the flat output and its derivatives
> flatness-based control usually used for set point changes

» reduced wind turbine model is flat with flat output rotor speed €2 and tower displacement zt

D. Schlipf et al.

Motivation Controller Tuning
Field Testing of Flatness-Based Feedforward Control on the CART2 ] 00

OO0



Controller Design
Differential flatness

» flatness is a system property: system inputs can be expressed by the flat output and its derivatives
> flatness-based control usually used for set point changes

» reduced wind turbine model is flat with flat output rotor speed €2 and tower displacement zt

Urated
Tower EQUILibrium Accommodation (TEQUILA)

> tower and rotor trajectories are planned online based on wind preview
» uses collective pitch and generator torque feedforward update
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Controller Design

Differential flatness

» flatness is a system property: system inputs can be expressed by the flat output and its derivatives
> flatness-based control usually used for set point changes

» reduced wind turbine model is flat with flat output rotor speed €2 and tower displacement zt

Urated
Tower EQUILibrium Accommodation (TEQUILA)
> tower and rotor trajectories are planned online based on wind preview
» uses collective pitch and generator torque feedforward update

> minimizes tower motion during transitions between partial and full load

D. Schlipf et al.
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Design of Flatness-Based Feedforward Controller

Based on inversion of
nonlinear 2 DOF model!

Original wind turbine model
> inputs: Mg and 0

> outputs: (2, Q, T, T, IT
» disturbance: vy

D. Schlipf et al. Controller

Field Testing of Flatness-Based Feedforward Control on the CART2 0y0

Mg

Q
T
Vo

generator torque
pitch angle

rotor speed

tower displacement
rotor-effective wind



Design of Flatness-Based Feedforward Controller

Mg  generator torque
: . " 0 pitch angle
Based on inversion of —
- Q rotor speed
nonlinear 2 DOF model! ) .
rr  tower displacement
o rotor-effective wind
Original wind turbine model Flat wind turbine model
> inputs: Mg and ¢ p— > inputs: Q,Q, oy, &, dr
> outputs: (2. Q. z, a7, it > outputs: Mg and 0
» disturbance: v, » disturbance: vy
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Design of Flatness-Based Feedforward Controller

Mg  generator torque
: . " 0 pitch angle
Based on inversion of —
- Q rotor speed
nonlinear 2 DOF model! ) .
rr  tower displacement
o rotor-effective wind
Original wind turbine model Flat wind turbine model
> inputs: Mg and ¢ p— > inputs: Q,Q, oy, &, dr
> outputs: (2. Q. z, a7, it > outputs: Mg and 0
» disturbance: v, » disturbance: vy

Now we can directly impose the turbine's dynamics!
Yo Yo

V

0,0, flat wind | Mc
T, I, F turbine
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Design of Flatness-Based Feedforward Controller

Mg  generator torque

0 pitch angle

Q rotor speed

rr  tower displacement
o rotor-effective wind

Based on inversion of
nonlinear 2 DOF model!

Original wind turbine model Flat wind turbine model
> inputs: Mg and 0 :> > inputs: Q,Q, oy, &, dr
> outputs: 2, Q, zr, a1, IT » outputs: Mg and 0
» disturbance: v, » disturbance: vy
Now we can directly impose the turbine's dynamics! ... But how?7?77?
Vo Yo
J > trajectories for rotor and tower motion
0,0, _ flat wind Mc ' > considering actuator constraints
TT, TT, IT turbine e

— static curves + 7 parameters for dynamics
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Simulation Study with

rotor effective wind speed

Perfect Wind Preview

collective blade pitch angle
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Simulation Study with Perfect Wind Preview

16 rotor effective wind speed
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>

>

>

full FAST model of CART2
EOG at rated wind speed
perfect wind preview assumed

Flatness-based feedforward

>

>

on top of feedback controller

coordinated control behavior of
collective pitch and generator torque

rotor and tower motion reduced at rated )
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Simulation Study with Perfect Wind Preview

16 rotor effective wind speed

v 14l ' ' ] Environment
E 12} ]
= ﬁ/\/ > full FAST model of CART?2
=

1?) collective blade pitch angle » EOG at rated wind speed

T . T " FB T . .

¥ 1g i :ﬂ 3 FB + TEQUILA ] > perfect wind preview assumed )
=

- ) generator torque Flatness-based feedforward
= . . . . .
=z L8y ] > on top of feedback controller
= 16f — ]
K }421 - » coordinated control behavior of

35 rotor speed ' collective pitch and generator torque

> rotor and tower motion reduced at rated |
34 ' . . . . :
0.04 tower top displacement AdJustments for lidar-based preview
a 0'0(2) g W Trajectory planning needs to deal with:
oo L . . , , , ] > measurement and model uncertainties
0 5 10 15 20 25 30 > delays in measurements and actuators
time [s]
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Comparing Lidar and Turbine

Rotor effective wind speed signals
» from turbine data and dynamic model using torque balance

> from raw lidar data using wind field reconstruction methods

vo [m/s]

800 1000 1200 1400

0 200 400 600
time [s]

Tuning
rO
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Comparing Lidar and Turbine

Rotor effective wind speed signals
» from turbine data and dynamic model using torque balance
> from raw lidar data using wind field reconstruction methods

Comparison over time
» larger trends similar
> smaller details differ

8 — we need to filter out
6 Lidar filtered uncorrelated frequencies
4 . . . . . . — done by 2 parameters of
0 200 400 600 800 1000 1200 1400 trajectory planning
time [s] ”

D. Schlipf et al. Tuning

Field Testing of Flatness-Based Feedforward Control on the CART2 rO



Tuning Flatness-Based Controller via Hybrid Simulations

Trajectory Optimization

collected data rotor effective — simulation — optimized field
. > simulation optimizer .
CART?2 & lidar | wind speed signals results parameters testing

A

updated

parameters
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Tuning Flatness-Based Controller via Hybrid Simulations

Trajectory Optimization

collected data rotor effective — simulation — optimized field
. > simulation optimizer .
CART?2 & lidar | wind speed signals results parameters testing

A

updated

parameters

1072 . . . S
FB Trajectory optimization
FB + TEQUILA

» 5 free tuning parameters

» cost = pitch activity + DEL
(tower & shaft) - energy vyield

7 . .
@ » reduction of tower motion at
low frequencies as expected
10—8 . . . .
0 0 0.5 1 1.5 — ready for field testing )

frequency [Hz]

Motivation Controller Tuning

D. Schlipf et al.

Field Testing of Flatness-Based Feedforward Control on the CART2 oy




Visualization of Data Processing on Gateway
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Field Testing Results

1 FB FB + TEQUILA

e o @9
B o ®

rotor speed STD [rpm]
e
o

[}

4 6 8 10 12 14
mean wind speed [m/s]

Rotor speed regulation

» overall improved
> higher variation at vyated

» 8 hours of data compared across 45-second chunks by NREL J
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Field Testing Results

FB FB + TEQUILA
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Rotor speed regulation Pitch activity

» overall improved » more action below ¥ateq

> higher variation at vyated > less action above ¥ ated

» 8 hours of data compared across 45-second chunks by NREL J
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Field Testing Results

FB FB + TEQUILA

1 1.5 — 160
—_ - Urated § Urated
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%] e )
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mean wind speed [m/s] mean wind speed [m/s] mean wind speed [m/s]

Rotor speed regulation Pitch activity Blade loads
» overall improved » more action below vated > reduction at ¥rated
> higher variation at vyated > less action above Urated » not much effect elsewhere

» 8 hours of data compared across 45-second chunks by NREL
— results in principle positive, but more testing necessary J
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Conclusion

Objectives

» How can we realize a lidar-assisted feedforward controller in the transition region?

» What are the lessons learned from this field testing campaign? A\ ar |
| \

Flatness-based control is an option ... / oo

» can be combined with baseline feedback control and adaptive lidar data processing
> based on inversion of reduced nonlinear model to limit tower motion during transition

> tuning necessary with collected turbine and lidar data

Conclusion
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Conclusion

Objectives
» How can we realize a lidar-assisted feedforward controller in the transition region?
» What are the lessons learned from this field testing campaign? A o

[
Flatness-based control is an option ... / '

Urated
» can be combined with baseline feedback control and adaptive lidar data processing

» based on inversion of reduced nonlinear model to limit tower motion during transition

> tuning necessary with collected turbine and lidar data

. but we need to re-think the concept!

> highly dependent on feedback controller and very sensitive to wind speed offset

» tuning of trajectory planning is tedious and only optimal for recorded data

» independent real-time capable system (Gateway) between lidar and turbine is very helpful!
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Outlook
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Multivariable extension based on simplified calculations s, acc 201 f () ‘l

> linear feedforward control update of generator torque and pitch angle only in transition region
» can be combined with collective pitch feedforward control above rated wind speed

» avoids online trajectory planing by fixing motion, only one tuning parameter

D. Schlipf et al.

Motivation Controller Tuning
Field Testing of Flatness-Based Feedforward Control on the CART2 ] 00

Conclusion
Oor



Outlook

. . 2 0 o/ . Qe Mc_ | turbine
Multivariable extension based on simplified calculations s, acc 201 f

> linear feedforward control update of generator torque and pitch angle only in transition region

» can be combined with collective pitch feedforward control above rated wind speed

» avoids online trajectory planing by fixing motion, only one tuning parameter

Cooperation within IEA Wind Task 32 “Lidar”

Workshops to identify and mitigate barriers to the use of lidar:

> optimizing lidars for wind turbine control applications (June 2016) iea wind
> guidelines on how to use lidar in the load verification & certification process (2017)

> explore the benefits of lidar-assisted control for the cost of wind energy (2018)
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Thank you for your attention!

D. Schlipf et al.
E-Mail: david.schlipf@ifb.uni-stuttgart.de
www.uni-stuttgart.de/windenergie
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