

High Performance Nonlinear Model Predictive Control for Wind Turbines

Wind Europe Summit, September 2016 Dr. Axel Schild, IAV

- B. Ritter, Industrial Science GmbH
- S. Gros, Chalmers University

Presentation Outline

- 1. Introduction
- 2. Load balancing Collective Pitch Model Predictive Control for Wind Turbines
- 3. MPC Tuning via Economic Performance Metrics
- 4. Rapid Prototyping of MPCs for Wind Turbines
- 5. Simulation Study: MPC at NRELs FAST

1. MPC Well-Researched Attractive PID-Alternative

$\min_{\boldsymbol{X},\boldsymbol{U}} J(\boldsymbol{X},\boldsymbol{U}) = \sum_{0}^{N-1} L\left(\boldsymbol{x}_k,\boldsymbol{u}_k\right) + $ "performance indicating" stage costs					$-M(\boldsymbol{x}_N)$ "stabilizing" terminal costs				
s.t.	$oldsymbol{x}_{k+1}$	=	$oldsymbol{f}(oldsymbol{x}_k,oldsymbol{u}_k,oldsymbol{w}_k)$	Plant dynamics					
	\mathbf{x}_{0}	—	$oldsymbol{x}(t_s)$	"Feedback" constraint					
	$rac{u}{x}$	\leq	$oldsymbol{u}_k \ oldsymbol{x}_k$	< <	$\overline{u} \ \overline{x}$:	$orall k \ orall k$	input & state constraints	

Scientific community

- 1. Koerber und R. King, "Nonlinear model predictive control for wind turbines," *Proc.EWEA*, 2011
- 2. Gros et. al, "A Real-time MHE and NMPC Scheme for the Control of Multi-Mega Watts Wind Turbines," *Proc. 52nd IEEE CDC*, 2013

MPC = solve optimal control problem periodically, for current dynamic plant state

Advantages

- Intuitive tuning mainly via model
- Harmonization of competing objectives
- Explicit handling of constraints
- Direct exploitation of reference & disturbance forecasts
 → preventive actions

Industrial community

- 1. EP2878811, "Methods of operating a wind turbine, and wind turbines", 2013
- 2. EP1911968, "Control system for a wind turbine and method of controlling said wind turbine", 2008

1. MPC Industry-Proven Technology in Other Sectors

MPC industrial success story in (Petro-) chemical process industry

- Over 3 decades of industrial experience
- Applicable to continuously evolving processes with complex nonlinear dynamics
- World-wide standard for large continuous plants → has proven to outperform conventional control by large
- Commercial products offered by highly specialized vendors

1. Major Obstacles for Technology Transfer Across Sectors

(Petro-) chemical sector

- Operation dominated by stationary plant behavior at few OPs
- Time constants > hours
- Air-conditioned control infrastructure rooms
- Continuous supervision by experienced operators
- Plant invest costs > 100M€
- Sophisticated engineering platforms

Wind energy sector

- Operation dominated by transient plant behavior over large regime
- Time constants < seconds
- Adverse installation location (package, heat, vibration)
- Autonomous plant operation
- Plant invest costs < 10M€
- At best (partial) academic solutions

Three central challenges

- \rightarrow Effective tuning guidelines to shape transient behavior as desired
- \rightarrow Meeting real-time constraints demands for problem-specific algorithms
- \rightarrow Rapid-prototyping tools to migrate from Engineering station to PAC

2. Modeling for Energy Capture vs. Tower Loads

Task-oriented, very simple WT model : (4+4-DoF

$$\begin{array}{rcl}
0 &=& J\dot{\omega} + r^{-1}T_G - T_A \\
0 &=& m\ddot{x} + d\dot{x} + kx - F_A \\
\ddot{\theta} &=& u_\theta \\
\ddot{T} &=& u_T
\end{array}$$

Torque balance Tower FA acceleration Pitch actuator acceleration **Generator Torque acceleration**

$$T_A = \frac{1}{2}\rho A C_P(\theta,\lambda) \frac{v^3}{\omega}$$

$$T_A = \frac{1}{2}\rho A C_T(\theta,\lambda) v^2$$

$$\lambda = \frac{R\omega}{v}$$

$$v = v_{in} - \dot{x}$$

Static inflow aerodynamic force & torque

Tip-speed ratio Effective collective wind speed

- Control inputs: **collective pitch** & **generator torque** acceleration $\boldsymbol{u} = (u_{ heta}, u_T)^T$
- Disturbance input: collective wind speed v_{in}

2. Full MPC Configuration for Wind Turbines

model + performance metric + relevant constraints = "working" MPC configuration

2. Operating Strategy to Be Realized via Classical Tracking MPC

Steady-state optimal wind turbine operation

Scheduling variable: wind speed vin

Associated tracking formulation

$$J(\boldsymbol{X}, \boldsymbol{U}) = \sum_{0}^{N-1} Q_{\omega}(v_{in,k}) \left(\omega_{k} - \omega^{\star}(v_{in,k})\right)^{2} + Q_{\theta}(v_{in,k}) \left(\theta_{k} - \theta^{\star}(v_{in,k})\right)^{2} + L_{F} \left(\boldsymbol{x}_{k}, \boldsymbol{u}_{k}\right)$$
Track optimal gen. speed
Track optimal pitch angle
How to systematically choose wind-scheduled weights?
L_{F} (\boldsymbol{x}_{k}, \boldsymbol{u}_{k}) = Q_{T} \dot{x}_{k}^{2} + Q_{\dot{\theta}} \dot{\theta}^{2} + Q_{\ddot{\theta}} \dot{\theta}^{2} + Q_{\dot{T}} \dot{T}^{2}

3. Operating Strategy to Be Realized via Economic MPC

Steady-state optimal wind turbine operation

Scheduling variable: wind speed vin

Associated economic formulation capturing transient & steady state optimum

$$J(\boldsymbol{X}, \boldsymbol{U}) = \sum_{0}^{N-1} \left(-\frac{\eta P_A(\omega_k, \theta_k, v_{in,k})}{\text{Max. energy capture}} + \frac{L_F(\boldsymbol{x}_k, \boldsymbol{u}_k)}{\text{Fatigue penalty}} \right) \quad \frac{\text{Non-convex}}{\text{functional}}$$

 $L_F\left(\boldsymbol{x}_k, \boldsymbol{u}_k\right) = Q_T \dot{x}_k^2 + Q_{\dot{\theta}} \dot{\theta}^2 + Q_{\ddot{\theta}} \ddot{\theta}^2 + Q_{\dot{T}} \dot{T}^2$

3. Making tMPC Qualitatively Mimick eMPC

Wind-scheduled tracking weights via 2nd-order Taylor Expansion

$$-P_{A}(\omega_{k},\theta_{k},v_{in,k}) \approx -P_{A}(\omega_{k}^{\star}(v_{in,k}),\theta_{k}^{\star}(v_{in,k}),v_{in,k}) \\ +\frac{1}{2}(\omega_{k}-\omega^{\star}(v_{in,k}) \quad \theta_{k}-\theta^{\star}(v_{in,k})) \boldsymbol{Q}(v_{in,k}) \begin{pmatrix} \omega_{k}-\omega^{\star}(v_{in,k}) \\ \theta_{k}-\theta^{\star}(v_{in,k}) \end{pmatrix}$$

$$\boldsymbol{Q}(v_{in,k}) = -\frac{1}{2}\rho A v_{in,k} \begin{pmatrix} \frac{\partial^2 C_P}{\partial \lambda^2} R^2 & \approx 0\\ \approx 0 & \frac{\partial^2 C_P}{\partial \theta^2} v_{in,k}^2 \end{pmatrix} \begin{vmatrix} \succ 0 & \succ 0\\ \omega_k = \omega^{\star}(v_{in,k})^{\star}(v_{in,k})\\ \theta_k = \theta^{\star}(v_{in,k})(v_{in,k}) \end{vmatrix}$$

Goal-oriented tracking weights with single tuning factor $_{\nu}$

$$\begin{aligned} \boldsymbol{Q}_{\omega}\left(\boldsymbol{v}_{in,k}\right) &= \nu\left(-\frac{1}{2}\rho A \frac{\partial^{2}C_{P}}{\partial\lambda^{2}} \left(\theta^{\star}(\boldsymbol{v}_{in,k}), \lambda^{\star}(\boldsymbol{v}_{in,k})\right) R^{2} \boldsymbol{v}_{in,k}\right) > 0 \\ \boldsymbol{Q}_{\theta}\left(\boldsymbol{v}_{in,k}\right) &= \nu\left(-\frac{1}{2}\rho A \frac{\partial^{2}C_{P}}{\partial\theta^{2}} \left(\theta^{\star}(\boldsymbol{v}_{in,k}), \lambda^{\star}(\boldsymbol{v}_{in,k})\right) \boldsymbol{v}_{in,k}^{3}\right) > 0 \end{aligned}$$

3. Comparison of Conventional tMPC vs. Economic (t)MPC

4. How to Get from Problem Description to Industrial Controller

5. Simulative Assessment for Turbulent Wind Fields

Identical energy capture, much less component wear

Mlife fatigue analysis

150

200

250

Base-line controller

etMPC

5. Simulative Assessment for Turbulent Wind Fields

 \rightarrow Target-optimized code allows for reducing computational burden by another order of magnitude \rightarrow Volatility due to changing active constraints, to be reduced by further measures

Summary

- Economically-inspired WT-MPCs are easy to tune and show very good performance
- Intuitive tuning rule reduces engineering effort & improves transient closed-loop response for tracking WT-MPCs
- Combination and integration of available tool building blocks facilitates easy engineering & migration WT-MPCs onto target hardware with marginal manual effort
- Computational performance of modern HW + modern MPC algorithms allow for fast sampling rates → to be exploited for tackling remaining industrial challenges:
 - autonomous plant operation ←→ safety & robustness measures
 - low system costs

←→ low cost hardware & engineering

Thank You

Dr. Axel Schild

IAV GmbH

Rockwellstraße 16, 38518 Gifhorn (GERMANY) Phone +49 5371 80-55890

dr.axel.schild@iav.de

www.iav.com