Hydrogen Europe

Hydrogen as an energy storage technology

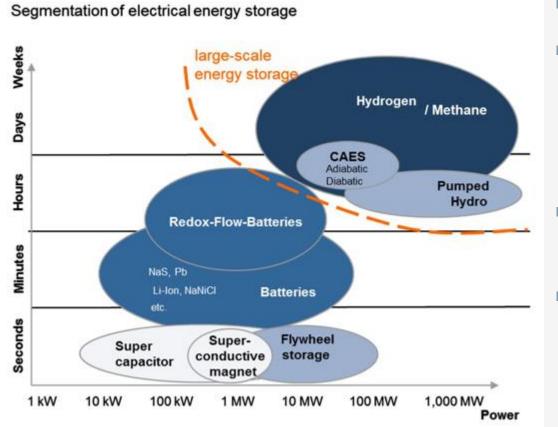
Jorgo Chatzimarkakis, Secretary General

Wind Europe, Annual Conference 2016

Our membership: 100 companies from 16 countries

ABENGOA	AVL 恭	Adelan	a Advent	adrenture	PRODUCTS 2		AkzoNobel	ALSTOM	BALLARD	CeresPower	DAIMLER
H Danish Pow	er Systems* 🕞	ele <u>ctro</u> er	icantieri I	IONDA	H <mark>JET</mark> Nyersgan (Mesarey Tr	ntrangen splug	rpower 📢	Logan Erector	Ma iy Tec	MICHELIN	NUCELLSYS
BOSCH Invested for the	GLOBAL	CET(H,)		Bantherm	DOOSAN	S elcogen	elcore	elringklinger)	eon	V7 evopro	Fronius
FuelCall Energy to Dee, thus, t	y Solutions 🖅 🖼 🖬	ENCELL	H2 Logic H	Nitidor Hy	DROGENICS	HYGEAR	HYSYTECH "	DORKA-		F	ITM POWER
Johnson Matthey	LIEBHERR	Linde	McPhy	MES	metacon	N telligence	OPOWERCELL		riversimple	S SAFRAN	SAINT-GOBAIN
SIEMENS	SondCon	b sunfire	B STRE	τογοτα		⊠ Vaillan†	VATTENFALL 😂	VIESMANN	VOLVO	WOIKOSKI	STEINBEIS- EUROPA- ZENTRUM
AFC energy		BEC ILMORTAN INTEL COLL FORLAN	Nedstack	SOLARIS	ANGLO AMERICAN	A	CORNAL INTO	Hinicio	Нушпран	Energy	RD
PersEE		VAN HOOL		SOLID POWER		Des Auto.	G	HyMove	H		

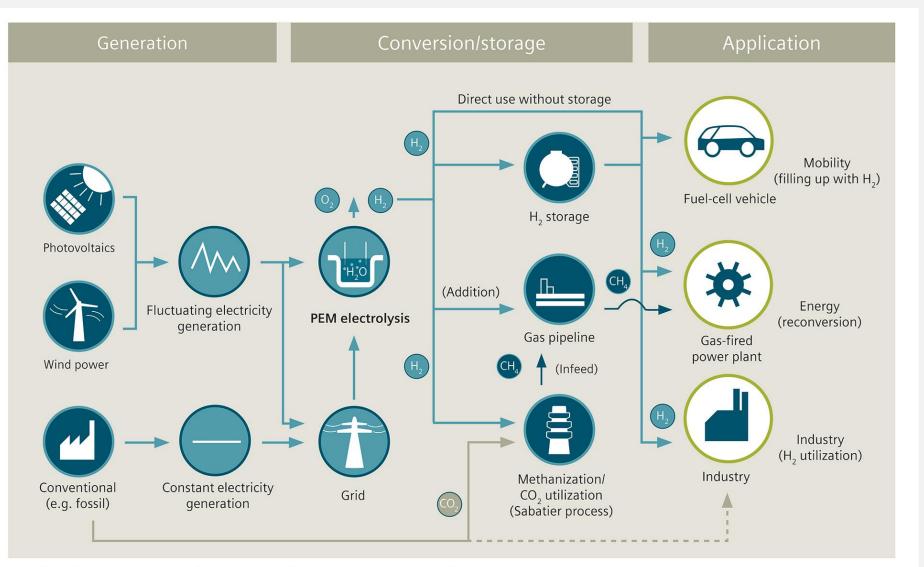
Hydrogen is a flexible energy vector



• "Water will be the coal of the future. Energy of tomorrow will be water that was split by electricity"

(Jules Verne, 1874)

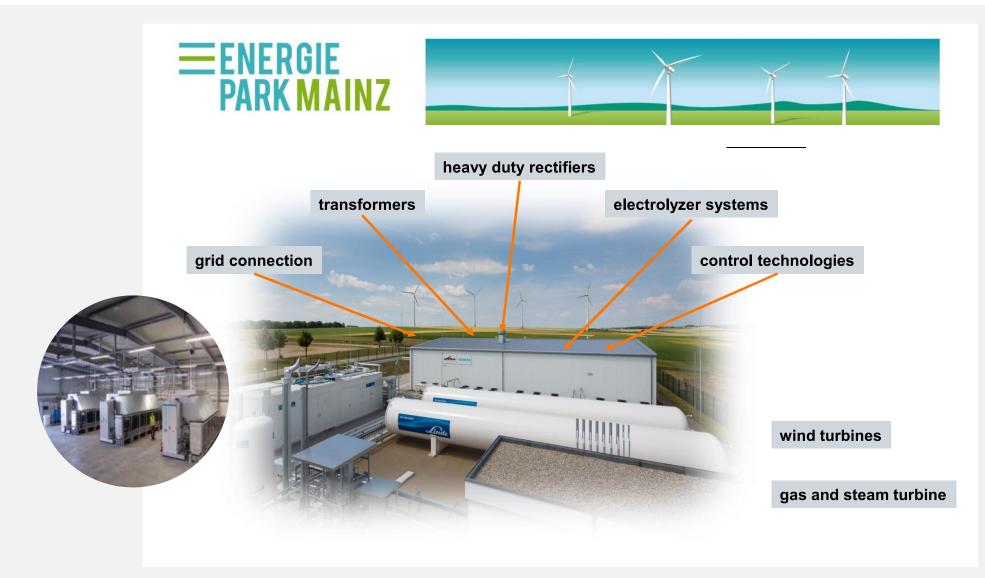
Hydrogen compared to other technologies



- No universal solution for electrical storage
- Large scale storage only via:
 - Pumped Hydro,
 - Compressed Air (CAES)
 - chemical storage media (H2 / Methane)
- Potential to extend pumped hydro capacities limited
- CAES: limitations in operational flexibility and capacity

H2 via Power2Gas only viable approach to store energy >10 GWh

How does it work?



Applications and examples of use of hydrogen electrolysis

How does it interact with the energy system?

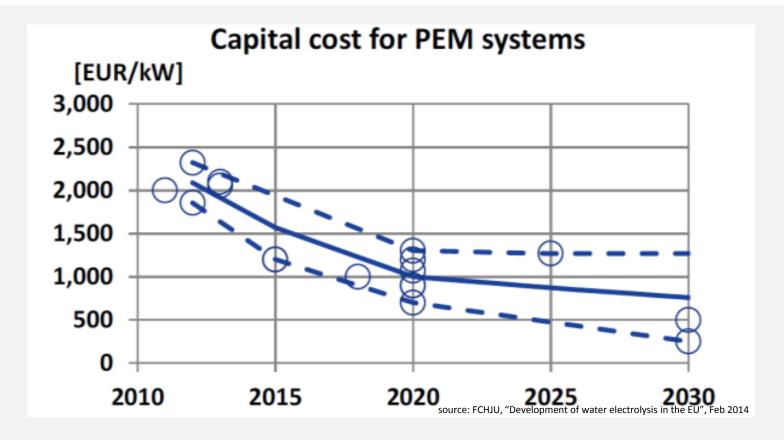
- Need definition on EU level of storage
- Need incentives (e.g. renumeration for grid flexibility)
- Need to stop paying for inefficiency (Curtailment)
- Barriers: Storage = treated as end consumer (fees, tariffs, taxes)

European Union has to create an appropriate mechanism: RED / EMD

Hydrogen generation cost according to DVGW/NOW study:

Application	Single use 20 €/MWh _{el} 2,000 h/a	Multiple use 20 €/MWh _{el} 2,000 h/a	Multiple use 20 €/MWh _{el} 4,000 h/a	Multiple use 20 €/MWh _{el} 4,000 h/a Improvements efficiency & cost	Reference price <u>w/o</u> <u>tax and</u> apportionment
Industry	7.54 €/kg	7.47 €/kg	4.49 €/kg	<u>3.30 €/kg</u>	2.13 €/kg 260 ¥/kg
Mobility	11.65 €/kg	<u>7.47 €/kg</u>	<u>4.49 €/kg</u>	3.30 €/kg	5.96 €/kg 750 ¥/kg
Gas Grid	21 Ct/kWh	19 Ct/kWh	11 Ct/kWh	<u>8 Ct/kWh</u>	3-4 Ct/kWh (9 Ct/kWh biogas) 4-11 ¥/kg

Conclusion: Mobility and Industry are the first markets for green H2!



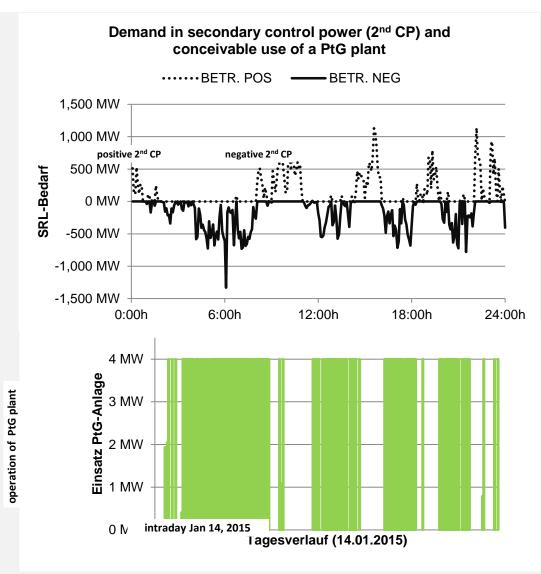
Electrolyser costs are falling:

- Business cases (e.g. refinery)
- Rewarding grid flexibility
- Avoiding curtailment
- "Greening" gas

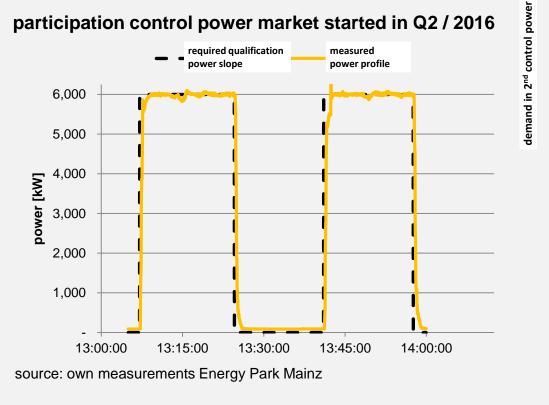
Sector Coupling

2016: 1200 € / KW 2018: 700 € / KW

Once installed, how dispatchable is it?



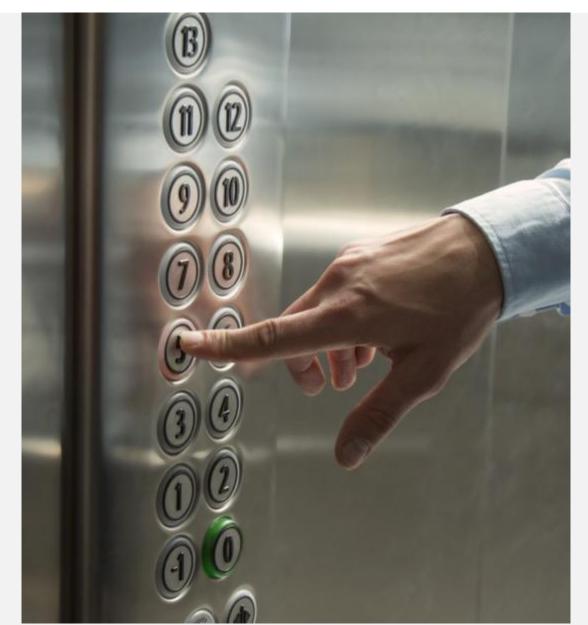
- Electrolysers = excellently dispatchable
 - respond up or down
 (0-100% in <1s, 100-0% in <1s)
 - provide grid services at all timescales
 - primary, secondary, tertiary control power
 - low-carbon grid balancing (unlike conventional methods)


Once installed, how dispatchable is it?

Energiepark Mainz

Qualification for grid services

How ready is it for large scale deployment?


Electrolyzer technology changing due to new requirements

ष्टु	Today	Tomorrow				
• demand driven	• Flexiblity for RE	• smart grid				
 Industry can address volume/cost requirements for future. Capacity for a large scale deployment given! 						

Elevator pitch

- CO₂-reduction targets clearly linked with RE.
- Require storage capacities in the TWhrange.
- H2 via Power2Gas = only viable approach to store energy >10 GWh.
- H2 = multifunctional: it can be reelectrified, but also shifted to the industry or mobility sector ("sector coupling").
- Power2Gas via electrolyzer increases the flexibility of the electric grid.
- Sector coupling will be essential to reach CO₂ reduction targets.

• "Nothing is more powerful than an idea whose time has come."

(Victor Hugo, 1870)