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Summary

Nonlinear filter algorithms play an increasing role in
advanced multivariable controllers for wind turbine
control systems. They are employed to estimate
hidden variables and uncertain parameters based
on available observations and input signals. The
body of research provides a broad range of algo-
rithms which are more or less appropriate for wind
turbine application. A practical challenge is the ef-
ficient implementation and the testing on industrial
target hardware. Another issue is the investigation
of observability and identifiability for a given design
model to identify potential gains from using non-
standard measurement instrumentation. Finally, the
illustrative estimation results for the 5-MW reference
turbine prove the accuracy and performance of the
employed nonlinear filters.
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1 Introduction

To meet the steadily increasing industrial require-
ments, wind turbine controllers have reached a ma-
ture level of closed-loop performance with respect
to energy production and load reduction. These
controllers are nonlinear, complex and build heavily
upon design heuristics gained from practical experi-
ences. Unfortunately, the latter significantly compli-
cates direct extension of field-proven controllers to
new advanced turbine designs without major modi-
fications.

On the other hand, it is even possible to outper-
form such strong heuristics with advanced multivari-
able controllers, if only precise information about the
dynamic wind turbine state were available. Such in-
formation is indeed generated by modern powerful
estimation algorithms which handle most practical
challenges satisfactorily.

Making these techniques ready for advanced

wind turbine applications calls for some basic de-
velopment steps. At first, the available algorithms
must be assessed and implemented incorporating
real-time requirements. Secondly, a suitable non-
linear model has to be derived which allows for
system analysis including observability and identi-
fiability properties. Since both properties depend
strongly on the available instrumentation, a detailed
discussion of potential gains in estimation quality
is conducted. Furthermore, the filter architecture
needs to be implemented both in simulation and on
industrial hardware. Finally, the performance as-
sessment and discussion completes the investiga-
tion.

2 Nonlinear state estimation

State estimation is a central topic for numerous
technical and biological applications. Especially ad-
vanced state-feedback controllers need the full state
information to be accessible in real-time. A major
obstacle for the reliable utilization is the requirement
not only for accurately known full dynamic state,
but also for external disturbances and critical sys-
tem parameters. Nonlinear Bayesian estimators like
sigma-point Kalman filters (SPKF) are a suitable tool
to generate these information online with a control-
oriented nonlinear turbine model (Sec. 3).

2.1 Kalman filter basics

The well-known Kalman filter (KF) has proven to be
the optimal filter for linear Gaussian estimation prob-
lems [1]. One fundamental prerequisite for applying
the KF is a linear (discrete-time) state-space repre-
sentation of the investigated system defined by

xk+1 = Adxk +Bduk + qk (1a)

yk = Cdxk +Dduk + rk (1b)

with time-invariant and known system matrices.
Secondly, the additive process noise qk ∼ N (0,Qk)
and the measurement noise rk ∼ N (0,Rk) are



assumed to be Gaussian, uncorrelated, zero-mean
and white noise sequences [2]. Thus, the state xk

contains a set of n Gaussian random variables (RV).
The third condition pertains to the system’s prop-
erty of observability and therefore the question if the
complete unknown initial state vector x0 can be in-
ferred uniquely only from known input and observa-
tion sequences uk and yk. Thus, the concept of
observability [3] (and identifiability) is discussed in
Sec. 4 in detail.

The prediction step of the KF (time update) pro-
vides the following a priori estimates for the state
vector and its error covariance matrix:

x̂
−
k = Adx̂

+
k−1 +Bduk−1 (2a)

P−
k = AdP

+
k−1A

T
d +Qk . (2b)

Similarly, applying the correction step (measure-
ment update) yields the posterior estimates:

x̂
+
k = x̂

−
k +Kkvk (3a)

P+
k =

(

In −KkCd

)

P−
k . (3b)

Therein, the observer matrix Kk (the Kalman gain)

Kk = P−
k C

T
d

(

CdP
−
k C

T
d +Rk

)−1
(4)

serves as a weighting matrix between the predicted
state estimate x̂

−
k and the innovation vk=yk− ŷk in

order to evaluate the corrected (and improved) state
estimate x̂

+
k . The innovation sequence, which is the

difference between measured and predicted output

ŷk = Cdx̂
−
k +Dduk , (5)

injects the new information from observations at
time step k to the filter algorithm.

2.2 Nonlinear Kalman filters

Despite the existing rich body of theory and free-of-
charge academic tools, nonlinear state estimation
has so far received only little attention in the wind
energy community. For nonlinear systems (like wind
turbines), which are usually on hand as state-space
systems like

xk+1 = fd(xk,uk,θk) + qk (6a)

yk = hd(xk,uk,θk) + rk , (6b)

there exist a variety of filter algorithms which pro-
vide better estimates in the Gaussian but also in the
non-Gaussian framework than the linear KF [4].

The established standard local filter is the ex-
tended Kalman filter (EKF) which builds on a re-
cursive linearisation procedure of the nonlinear sys-
tem model in Eqs. (6). Despite the known major
drawback of filter divergence [5] it is still used in
many applications due to its simplicity and straight-
forward implementation coming from the linear KF
algorithm.

However, in 1997 the invention of the unscented
Kalman filter (UKF) has launched the development
of a new class of derivative-less local filters [6].
These algorithms are today summarized within the
framework of sigma-point Kalman filters (SPKF).

Other than the EKF, all SPKF avoid in general
the numerical computation of partial derivatives to
obtain a linearised mapping of the system dynam-
ics. Thus, rather than linearising the known nonlin-
ear model, the SPKF approximate the multivariate
probability density functions by a set of determin-
istically chosen sigma-points (SP ). These SP are
passed through the nonlinear model and to obtain
thereafter an improved Gaussian approximation for
the statistical properties of the transformed SP . The
many variants of filters differ mainly by the number
of SP and the choice of their associated weights.

The new class of SPKF includes besides the UKF
also the central-difference Kalman filter (CDKF), the
Gauss-Hermite Kalman filter (GHKF) and the cu-
bature Kalman filter (CKF) - as the latest family
member [7]. The theory of UKF and CDKF has
already been assessed by various publications for
other technical applications [5, 8, 9, 10].

In contrast, the CKF has rarely been discussed at
all and until now never (to the author’s knowledge)
for wind turbine application. Due to this gap, the
paper discusses in the next section the CKF imple-
mentation and highlights in addition some practical
advantages over the UKF.

2.3 Efficient cubature Kalman filters

For the above nonlinear Gaussian estimation prob-
lems the Kalman filter Eqs. (2 - 4) have to be modi-
fied in order to incorporate the nonlinear system dy-
namics. To obtain these relations, the CKF employs
a spherical-radial cubature rule to evaluate the mul-
tivariate probability distributions (while e.g. the UKF
uses the unscented transformation).

Since emphasis is put on an efficient and a ro-
bust implementation, we skip the standard version
of the CKF and directly aim at the square-root cu-
bature Kalman filter (SRCKF). Thus, instead of the
error covariance matrix Pk its matrix square-root or
Cholesky factor Sk is directly computed by the filter
algorithm. Both matrices are related by Pk = SkS

T
k

where Sk is a lower triangular matrix.
The CKF uses 2n sigma-points (or cubature

points) which propagate the stochastic properties of
the state through the nonlinear model. This is one
SP less than the UKF which is important for the fil-
ter’s robustness. Since the first SP as the mean
of the set may have a large negative weight, the re-
sulting covariance matrix may not always be positive
definit. Thus, the square-root UKF needs in general
several Cholesky downdates on the matrix square-
root S+

k in every recursion step. Moreover, the CKF
has only the noise covariances Qk and Rk as free
design parameters (while the UKF needs three addi-



tional parameters which must be chosen properly).
Despite this, the CKF shows the same accuracy as
the UKF in simulations and has therefore mainly nu-
merical advantages.

The algorithm of the SRCKF is separated into a
prediction step 1 and a correction step 2 as follows:

1a) Compute 2n sigma-points and propagate them
through the nonlinear state equation:

X+
k−1 = X̂

+

k−1 +
√
n
[

S+
k−1 , −S+

k−1

]

(7a)

X ∗
k = fd(X

+
k−1,Uk−1) (7b)

1b) Evaluate the a priori state estimate and the
Cholesky factor of the covariance matrix by QR
decomposition:

x̂
−
k =

1

2n

2n
∑

i=1

X ∗
k (:, i) (8a)

S−
k = qr

{[

1√
2n

(

X ∗
k − X̂

−

k

)

, SQ,k

]}

(8b)

2a) Compute 2n new sigma-points and propagate
them through the measurement equation:

X−
k = X̂

−

k +
√
n
[

S−
k , −S−

k

]

(9a)

Y∗
k = hd(X

−
k ,Uk) (9b)

2b) Evaluate the predicted output and the matrix
square-root of the innovation covariance:

ŷk =
1

2n

2n
∑

i=1

Y∗
k (:, i) (10a)

Sy,k = qr
{[

1√
2n

(

Y∗
k −Ŷk

)

, SR,k

]}

(10b)

2c) Calculate the error cross-covariance matrix and
then evaluate (update) the Kalman gain:

Pxy,k =
1

2n

(

X−
k −X̂

−

k

)(

Y∗
k −Ŷk

)T
(11a)

Kk =
(

Pxy,k/S
T
y,k

)

/Sy,k (11b)

2d) Compute a posterior state estimate and covari-
ance matrix square-root by QR decomposition

x̂
+
k = x̂

−
k +Kkvk (12a)

S+
k = qr

{[

Zk , KkSR,k

]}

(12b)

where Zk is defined by

Zk =
1√
2n

(

(

X−
k −X̂

−

k

)

−Kk

(

Y∗
k −Ŷk

)

)

. (13)

Comparing these equations with the linear KF, the
complexity of the algorithm obviously increases sig-
nificantly. However, the CKF is now applicable for ar-
bitrary (including non-differentiable) nonlinear sys-
tems which is a great improvement in comparison

to the EKF. This benefit results from the functional
evaluations which are executed for the nonlinear
model in Eqs. (7b) and (9b).

In a nutshell, the design equations become a lot
more complicated, but the free design parameters
of the filter, Qk and Rk (or its associated Cholesky
factors SQ,k and SR,k), remain the same. As can
be seen from the above equations, a nonlinear plant
representation is necessary as an internal design
model for the algorithm. Such models will be intro-
duced in the next section.

3 Modeling of wind turbine dynamics

The design model must be tailored to the specific
problem. Thus, a control engineer must match the
model granularity to the control and/or estimation
task which he or she wants to solve [4]. Unlike
higher order simulation models such as FASTv8,
Flex5 and Bladed, the (internal) controller and/or
state estimator design model must be of reduced
order to be feasible and yet simple to comprehend.

Since the advanced design model in Eq. (15) is
too complex to introduce it in detail in this paper, the
following simplified wind turbine drive-train model

ϕ̈g =
ρ

2

πR3

Θ
CM

( ϕ̇gR

vw
, β

)

v2w − igb

Θ
Mg (14a)

ng =
60

2π
igb ϕ̇g (14b)

is considered for illustrative purposes. Eq. (14a)
represents the known torque balance on the rotor
side and Eq. (14b) the observation model. The fol-
lowing vector quantities are defined: The dynamic
state vector x = [ϕ̇g], the control input u=[Mg β]T,
the disturbance input d=[vw], the parameter vector
θ = [ρ] and the output vector y = [ng]. The remain-
ing model parameters are assumed to be constant
and a priori known. The aerodynamic torque coeffi-
cient CM(λ, β) for the NREL 5-MW turbine is shown
in Fig. 1.

Fig. 1: Aerodynamic torque coefficient

Such a model is well suited to estimate the rotor
effective wind speed only from the knowledge of the
input u and the output y. This task is relatively sim-
ple and the wind speed is observable even without



incorporating the wind anemometer. Yet, the more
sophisticated (and quite interesting practical) ques-
tion raised by engineers reads:

Is it possible to estimate x, d and θ simultane-
ously and uniquely from observations? And if so,
what conditions apply? The answer provides a de-
tailed structural observability analysis (Sec. 4.1).

Apart from the rather simple model in Eq. (14),
a more complex model including nacelle and drive-
train dynamics has been established for state and
parameter estimation purposes in [4, 11]. Aiming at
a thorough observability analysis as well as a de-
tailed investigation of benefits from additional mea-
surements, this model is augmented by the relevant
out-of-plane blade dynamics.

Hence, the considered wind turbine model for the
detailed analysis in Sec. 4.2 consists of 14 mechan-
ical states and is defined by the following set of non-
linear second-order differential equations:

ẍT = f1
(

x,u,θ,d
)

ÿT = f2
(

x,u,θ,d
)

ϕ̈g = f3
(

x,u,θ,d
)

∆ϕ̈ = f4
(

x,u,θ,d
)

ẍB,1 = f5
(

x,u,θ,d)

ẍB,2 = f6
(

x,u,θ,d)

ẍB,3 = f7
(

x,u,θ,d) .

(15)

These dynamic equations can always be reformu-
lated and collected in the state vector equation

ẋ = f(x,u,θ,d) ∈ R
14 (16)

as first part of the nonlinear state-space model. Still,
without the measurement vector equation this repre-
sentation is not complete. The choice of the outputs
also directly affects the amount of information about
a desired hidden quantity. Thus, in order to assess
these effects of the measurement instrumentation
on the observability properties, the following three
configurations are investigated:

a) The standard measurement instrumentation in-
cludes axial and lateral nacelle accelerations,
the generator speed and rotor azimuth angle:

ystd =
[

ẍT ÿT ng ϕ
]T ∈ R

4. (17)

b) The extended measurement instrumentation in-
cludes additionally the three individual out-of-
plane blade-root bending moments:

yext =
[

· · · MBy,1 MBy,2 MBy,3

]T ∈ R
7. (18)

c) The advanced instrumentation considers also
the tower base bending moments:

yadv =
[

· · · MTx MTy

]T ∈ R
9. (19)

Hence, the information about the system states and
parameters (contained in the observed output vec-
tor) should gradually increase from standard to ex-
tended to advanced configuration. This assumption
will be analysed by an observability and identifiabil-
ity analysis.

4 Observability and identifiability

The concepts of observability and identifiability are
actually two different approaches to assess (phys-
ical) properties of a dynamic state-space model in
a systematic way. Both concepts attempt to iden-
tify and evaluate the amount of information about a
particular quantity in the measurable output.

While observability is always related to system
states x, the concept of identifiability focuses on the
constant parameters θ and on the disturbance in-
puts d (which can be interpreted as quickly time-
varying parameters).

Considering linear systems like (1), observability
depends only on the system matrices (Ad and Cd),
and is evaluated for instance with Kalman’s observ-
ability criterion or the observability gramian matrix
[12]. Thus, the specific control input u is irrele-
vant to evaluate if all states are uniquely observable.
On the contrary, identifiability depends in general on
the (control and disturbance) input signals because
the identification problem is nonlinear also for linear
state-space models. For this reason, a persistent
excitation by the system inputs must be enforced to
identify system parameters.

In case of nonlinear systems, both observability
and identifiability cannot be strictly separated any
more since both are in general dependent on the
input and moreover, states and parameters are re-
lated arbitrarily. Both concepts can then be tackled
together if the state vector of original system is aug-
mented by the parameters which yields

xT
a =

[

xT θT dT
]

. (20)

Since there is mathematically no difference between
physical and fictitious states (parameters) the state
Eq. (16) turns formally into

ẋa = fa(xa,u) (21)

assuming the following dynamic parameter models

θ̇ = 0 and ḋ = 0 . (22)

Thus, identifiability is assessed indirectly by investi-
gating the observability of the augmented states.

There are mainly two approaches to investigate
identifiability [13]:

1. The theoretical or structural identifiability and

2. the practical local identifiability analysis includ-
ing sensitivity-based methods.



In this contribution we focus first on the theoretical
analysis in Sec. 4.1 and highlight after that the prac-
tical concepts in Sec. 4.2. The latter are also appli-
cable for higher order nonlinear systems as they as-
sess the identifiability locally based on either exper-
imental or simulation data. An overview on defini-
tions and concepts on identifiability analysis is given
by [13, 14].

4.1 Structural identifiability analysis

The theoretical analysis of observability and iden-
tifiability is often very hard to conduct and some-
times impossible for nonlinear systems. Still, we
will show in the following how this procedure is con-
ducted in principle employing the illustrative model
from Eq. (14). After augmenting the states and per-
forming some generalizations, the following state-
space representation is obtained





ẋ1

ẋ2

ẋ3



=





p1 x3 f
(

x1 p2

x2

, u2

)

x2
2 + p3 u1

0
0



 (23a)

y = p4 x1 (23b)

where p4 is set to 1 without loss of generality (if p4=
0 as trivial case is excluded). Then, one possibility
to prove the global and structural identifiability is to
show that the following mapping

z =





y
ẏ
ÿ



 =





x1

p1 x3 f
(

x1 p2

x2

, u2

)

x2
2 + p3 u1

p1 x3 ḟ
(

x1 p2

x2

, u2

)

x2
2 + p3 u̇1



 (24)

is invertible with respect to x. However, this is
not possible for an arbitrary function f(x1/x2, u2).
Restricting ourselves to the partial load operating
regime and thus u2 = 0, such general statements
on identifiability can be obtained from Eq. (24). In
addition, the solution may serve as a simple state
estimator which will be discussed in future contribu-
tions. Anyhow, the time derivative

ḟ
(x1 p2

x2

, u2

)

=
∂f

∂x1

ẋ1 +
∂f

∂x2

ẋ2 +
∂f

∂u2

u̇2 (25)

must not be equal to zero in general and thus either
u̇1 6= 0 or u̇2 6= 0 must hold. Therefore, if the system
approaches steady-state conditions, identifiability is
lost in any case since Eq. (24) can then never be
solved for x. Due to the fact that the nonlinear map-
ping z = q(x,u) is rarely invertible dealing with wind
turbines dynamics,

x = q−1(y, ẏ, ÿ,u, u̇) (26)

often cannot be derived explicitly. Nevertheless, the
practical local observability may be still assessed by
computing the following Jacobian matrix

Q(x,u, u̇) =
∂z

∂x
. (27)

Investigating the rank of Q numerically for a given
wind turbine and simulation data proves that this lo-
cal observability matrix has full rank provided x2 > 0
and x3 6= 0. Thus, the engineer can draw the follow-
ing conclusions: As the wind speed x2 = vw is non-
zero during operation and the air density x3 = ρ as
well, the only restriction to obtain unique estimates
for the three augmented states is that the inputs
must be persistently exciting the dynamic system.

This discussion shows that even for simple wind
turbine models the theoretical observability and
identifiability analysis can become tough rather
quickly. Thus, practical numerical tools are required
e.g. based on Fisher Information which is discussed
in the next section.

4.2 Sensitivity analysis

There are several practical tools to investigate the
local observability of nonlinear systems based on a
sensitivity analysis [14, 15]. In this paper we em-
ploy and investigate the local observability Gramian
matrix G defined as follows:

G =

∫ T0

0

ΦT(t)CT(t)C(t)Φ(t)dt (28)

where Φ(t) is the state transition matrix and C(t)
the output matrix. The Gramian matrix G is evalu-
ated for the time interval T0 for the local linear model
containing the information about the observability
of states and parameters within its singular values.
From a practical point of view the empirical observ-
ability Gramian [14] is assessed which is easier to
compute than Φ(t) and C(t) at each time step in
Eq. (28).

The analysis of the empirical Gramian observabil-
ity matrix is conducted for the same simulation re-
sults used in the next section. The evaluation of the
eigenvalues and eigenvectors provides quantitative
observability measures [14]. These criteria are com-
puted for the three different measurement configura-
tions introduced in Sec. 3.

First, the comparison of standard and extended
configuration is shown in Fig. 2. It shows the change
of observability for the 28 augmented states (14 me-
chanical, 2 disturbance inputs and 12 parameters).
The states and parameters related to the nacelle
and drive-train dynamics are not affected by the ad-
ditional outputs. The observability measure is for
most of them bigger than 10−3 which features good
conditions for estimation. A significant improvement
can be observed for the blade deflections and some
parameters of the blade model.

In contrast to Fig. 2, the comparison of extended
and advanced measurement configuration in Fig. 3
indicates insignificant changes of observability con-
ditions (except for one parameter related to the tur-
bine height). Thus, the content of information in the
output vector obviously does not increase although
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Fig. 3: Change of the empirical Gramian observability
measure (extended vs. advanced configuration)

there are more observations available. This indi-
cates redundancy in the measurement instrumen-
tation. As final remark to Fig. 3, the states related
to the drive-train torsion (∆Ω and ∆ϕ) have the low-
est observability measures. This correlates with the
estimation results for drive-train torsion in Fig. 5.

Since there is no sustainable benefit from using
the advanced measurement instrumentation it is ex-
cluded from the further investigation.

In summary, the observability analysis has re-
vealed vital properties for a successful practical ap-
plication of nonlinear filters. The discussed observ-
ability criteria allow also for detection of good con-
ditions to estimate critical system parameters during
operation which is indispensable for an online model
update.

5 Simulation and hardware test results

In the previous sections several important aspects
related to nonlinear state estimation have been dis-
cussed. The knowledge gained from this investiga-
tion is condensed now into the design of advanced
estimators for wind turbine application.

5.1 Simulation results from aeroelastic code

The observability analysis provided the theoretical
background to investigate different measurement
configurations. Since the advanced configuration
has no major benefit compared to the extended con-

figuration, it is excluded from the following consider-
ations.

The SRCKF algorithms have been implemented
and assessed for both configurations in Mat-
lab/Simulink. These observers are tested with the
5-MW onshore reference wind turbine [16] using the
Simulink interface to the complex nonlinear simu-
lator FASTv8 [17]. The choice of the filter design
parameters is beyond the scope of this paper and
therefore excluded.

The illustrative estimation results are obtained
for a turbulent wind field in the full load regime
(generated according to the standard IEC-61400).
Fig. 4 shows the effective wind speed, the genera-
tor power, the control inputs and the observed out-
puts with different measurement noise levels. As ex-
pected the controller provides the nominal electrical
power of 5 MW.

With the known control inputs and the noisy mea-
surements the nonlinear filters estimate the critical
states and parameters which is presented in Fig. 5.
The following general observations are made:

1. The filter performance to estimate the nacelle
dynamics is very accurate. It is similar for stan-
dard and extended measurement configuration.

2. The drive-train dynamics are assessable with-
out direct load measurements.

3. The wind speed is observed with high precision
despite the fact that no measurable wind infor-
mation is assumed to be available for the filter.
A small time delay appears due to the delayed
effect on the drive-train and nacelle dynamics.

4. The main difference between standard and
extended measurement equipment arises for
the blade dynamic response. This correlates
also with the results obtained from observabil-
ity analysis.

5. The blade deflection can be predicted accu-
rately based on information of the extended
measurement configuration.

The estimation results confirm that the standard
instrumentation (available in every modern wind tur-
bine) is sufficient to generate accurate estimates of
unmeasurable or hidden quantities. These informa-
tion can be provided to advanced state-feedback
controllers to improve closed-loop performance [18].

Significant improvements arise from extended
configuration mainly for estimation of system states
and parameters related to the blade dynamics.

5.2 Implementation on industrial hardware

As highlighted in [4] the estimation problem consists
of multiple sub-problems including state, parameter
and load estimation. If real-time application is crit-
ical, these sub-problems can be tackled by an effi-
cient observer architecture (Fig. 6). By this means
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ẏ
T
in

m
/s

-0.2

-0.1

0

0.1

0.2
True State
Standard
Extended

∆
ϕ
in

ra
d

×10−3

3

4

5

6

7
True State
Standard
Extended

x
T
in

m

-0.3

0

0.3

0.6

0.9
True State
Standard
Extended

y
T
in

m

-0.15

-0.1

-0.05

0

0.05
True State
Standard
Extended

v
w
in

m
/s

8

12

16

20

24

True State
Standard
Extended

x
B
,1
in

m

-2

0

2

4

6 True State
Standard
Extended

t in s
290 300 310 320 330 340 350 360

x
B
,3
in

m

-2

0

2

4

6
True State
Standard
Extended

Fig. 5: Comparison of results from standard vs. extended
configuration for state and parameter estimation
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Fig. 6: Structural sketch of observer architecture

the system properties can be exploited to save com-
putational effort. Moreover, such a distributed archi-
tecture enables to use different linear and nonlinear
filter types suited to the sub-problems. Further ad-
vantages are the selective filter adaptation (e.g. for
the wind estimator) and the situational by-passing
triggered by (online) observability measures.

Since the testing of controller and observer perfor-
mance in simulation has provided very promising re-
sults, the question of hardware implementation must
be addressed subsequently. Therefore, the Beck-
hoff controller CX2040 has been chosen as a refer-
ence of a state-of-the-art industrial controller.

The SRCKF and various other filter algorithms
were successfully tested and implemented in Mat-
lab/Simulink in the first place. These filters have
been exported via Simulink code generation and
TwinCat3 to the industrial controller.

The hardware study was then conducted with the
28th order nonlinear model which required a com-
putational time of less than 10 ms for each recursion
step (using monolithic sigma-point filter algorithms).
A significant improvement on that was possible by
deploying the right observer architecture as briefly
discussed above.

6 Conclusions

The investigation of powerful recursive nonlinear al-
gorithms for state estimation of wind turbines proves
to be real-time feasible already. This has been
demonstrated by estimation results for the NREL 5-
MW reference turbine and additional hardware test-
ing on a state-of-the-art industrial controller. The ob-
servability and identifiability analysis provided new
information relevant especially for successful appli-
cation of nonlinear state estimators in the field. Fur-
thermore, a quantitative evaluation of the benefits
from non-standard measurements has been con-
ducted which proved the significant potential for both
estimation quality and control performance incorpo-
rating blade root sensors. The body of research yet
provides all required features to successfully tackle
the practical challenges like robustness of imple-
mentation and constraint-handling. The main chal-
lenge remaining is the successful integration into an
industry-ready platform and the field testing on real
wind turbines.
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Nomenclature

n ∈ Z number of states

xk ∈ R
n dynamic state vector

x̂
−
k ∈ R

n a priori state estimate

x̂
+
k ∈ R

n posterior state estimate

uk ∈ R
p control input vector

dk ∈ R
d disturbance input vector

θk ∈ R
r parameter vector

vk ∈ R
q innovation sequence

yk ∈ R
q observed system output vector

ŷk ∈ R
q predicted system output vector

Ad ∈ R
n×n system matrix

Bd ∈ R
n×p control input matrix

Cd ∈ R
q×n observation output matrix

Dd ∈ R
q×p direct feedthrough matrix

In ∈ R
n×n unity matrix

Kk ∈ R
n×q Kalman gain matrix

P−
k ∈ R

n×n a priori state error covariance matrix

P+
k ∈ R

n×n posterior state error covariance matrix

Pxy,k ∈ R
n×q error cross-covariance matrix

Qk ∈ R
n×n process noise covariance matrix

Rk ∈ R
q×q measurement noise covariance matrix

SQ,k ∈ R
n×n Cholesky factor of Qk = SQ,kS

T
Q,k

SR,k ∈ R
q×q Cholesky factor of Rk = SR,kS

T
R,k

Sy,k ∈ R
q×q innovation error cov. matrix square-root

X+
k−1 ∈ R

n×2n SP before passing through fd(·)
X ∗

k ∈ R
n×2n SP after passing through fd(·)

X−
k ∈ R

n×2n SP before passing through hd(·)
Y∗
k ∈ R

q×2n SP after passing through hd(·)
Uk ∈ R

p×2n matrix with 2n column vectors of uk

X̂
+

k−1 ∈ R
n×2n matrix with 2n column vectors of x̂+

k−1

X̂
−

k ∈ R
n×2n matrix with 2n column vectors of x̂−

k

Ŷk ∈ R
q×2n matrix with 2n column vectors of ŷk

β ∈ R collective blade pitch angle

ϕ̇g ∈ R generator angular speed

ρ ∈ R air mass density

Mg ∈ R electrical generator torque

vw ∈ R rotor effective wind speed
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