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Automatic Anomaly Detection in Offshore Wind
SCADA Data

Steffen Dienst and Jonas Beseler

Abstract—We propose a computationally simple
anomaly detection method that assists operators of
offshore wind parks with monitoring the operation of wind
turbines. Previously published methods focus on creating
high quality predictive models for specific physical
operational aspects of turbines, like power production or
temperatures of the gearbox in relation to wind speed
and other exogenous factors. SCADA systems of wind
turbines typically provide many more sensor data time
series than are being used for monitoring purposes. We
show how this data can be used to automatically learn
a large number of simple models that in sum can alert
the operator about a variety of potentially defect related
changes in different components. A number of different
insights applicable to similar problems are provided in the
conclusions. The system was developed and applied in
an offshore wind park and is used to support predictive
maintenance.

Keywords—Condition Based Maintenance, Anomaly De-
tection, SCADA Data Analysis, Time Series Analysis.

I. Introduction

Operating a big number of wind power plants efficiently
is a challenging task. Each individual wind energy con-
verter (WEC) has can differ in several ways: structurally,
current health conditions of components and sensors and
parametrization of the controller. Physical inspections of
WECs are expensive and may not even be possible for
longer stretches of time due to weather related restriction.
In offshore wind parks the problem is even bigger. There is
be only a limited number of opportunities to fix any physical
problems in an offshore wind turbine throughout the year.
These facts mean that monitoring and comprehensive
interpretation of the SCADA data produced by these
turbines is essential for long-term economic success.
Only if the operator is aware of defects or performance
degradation of components as early as possible, he can
efficiently operate the WEC.

The offshore wind park Global Tech I (GT1) is located
about 140km of the german north-west coast and officially
started production in autumn of 2015. It comprises 80
WECs of type Adwen AD 5-116 with a per turbine power
rating of 5MW.
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Fig. 1. Dashboard overview of the offshore park’s topology. The colored
arcs show the proportional time each power plant spent in a specific
operation mode. Yellow represents maintenance, light green stands for
’ready’ and dark green means ’in production’.

Figure 1 shows a schematic view of the GTI park
topology where each WEC is represented as a pie chart
showing the relative times of the day spent in a specific
operation mode.

Each turbine is equipped with 313 different sensors
that log the minimum, maximum, average and standard
deviation for each 10 minutes interval. Additionally, there
are several counters as well as event logs. In case of
an error a ring memory provides details measurement
data for each sensor in a higher sampling rate of 10ms.
Each WEC has its own unique parametrization and is
operated individually. Also, due to the harsh environmental
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conditions present in an offshore setting, sensors have a
significant probability of breaking. In our experience, at
each given time up to 2% of all sensors may be broken.

A. Problem Description

All these conditions present significant challenges when
using the measurement data to learn about the cur-
rent health condition of the WECs. Due to the remote
location, the difficulties and costs involved in carrying
out maintenances and repairs and the size of potential
economic losses in case of lost production the operator
was interested in using the SCADA data produced by
each turbine to get a better, more complete awareness
of any change in their health states. SCADA systems
internally already employ a number of rules and thresholds
that monitor different sensors with the main purpose of
stopping the WEC if a potentially damaging condition is
observed. Thresholds per sensor are insufficient, though.
Many interesting changes, like continuous temperature
increases in bearings or slow pressure losses typically
manifest themselves within a normal value range for the
respective sensors. Thresholds alone are insufficient.

Changes in the interaction of the WECs components
that may indicate defects were only visible through manual
inspections of sensor data visualizations by data analysts.
These inspections must inevitably be incomplete, as there
are 313 ∗ 80 = 25.040 sensors available in the GT1 park.

The task posed was: Automatically identify individual
WECs with atypical measurements with high accuracy
using only existing operational SCADA data from wind
turbines. From a machine learning perspective this task
can be formulated as: How can a system learn to distin-
guish between "normal" and "anomalous" operation of as
many components in a WEC as possible with the least
amount of additional, manually added knowledge? The
main requirements for such a system were:

1) No/as little metadata as possible The system
should not need to know about the mechanical and
electrical processes or the components of a WEC.

2) No explicit, manual definition of "normal be-
haviour" per sensor In many cases the range
of valid values depends on the current operation
mode. Also, the range may change over time, for
example due to degradation or changes in the
parametrization. Requiring the operator to provide
an explicit expectation per sensor is not feasible.

3) Fast learning for quick iterations Parameters
change, components get swapped. In each case
the algorithm needs to relearn. Excessive earning
times are not feasible.

4) Efficient model application The system should
not require special hardware to run. Typical off-
the-shelve hardware in use by the operator should
suffice.

5) Low false alert rate The operator is confronted
with a number of automatic warning and error
log messages per WEC and day. Any additional

messages produced should be as relevant as
possible to be useful.

6) Complements SCADA alerts The manufacturer
has a number of internal checks in its system.
Our anomaly detection algorithm should not try to
replicate these rules but rather focus on monitoring
as many previously unobserved aspects of the
WEC’s operation as possible.

B. Contributions

We presents an efficient and computationally light
method to automatically learn reference models for the
majority of sensors of a wind turbine. We then show how
to use these models to monitor the continuous stream of
SCADA data to identify anomalies by comparing sensor
data with predictions made by these models. We give
details about the heuristics used to identify the root causes
for each anomaly. These anomalies get presented to a
data analyst who can use this information to manually
classify the changes and use this knowledge to reduce the
potential economic impact of component malfunctions. We
present a preliminary classification of behavioural changes
found in the WECs of the GTI park in the spring of 2016.
Finally, we list some lessons and experiences we learned
from applying the presented method for the purpose of
enabling predictive maintenance.

II. Related Work

We do not focus on condition monitoring in the form
of vibration analysis of generators and gears, because
these aspects are well understood and the market offers
a broad variety of products. Rather, we are interested in
using all SCADA data a wind turbine can output to identify
malfunctions the operator might not be aware of, yet.

There are a number of published methods to ana-
lyze SCADA data with the explicit goal of identifying
malfunctioning components in wind turbines [1]. They
use machine learning techniques like artificial neural
networks [2], self-organizing maps [3] or support vector
machines [4]. Although the learning capability of these
methods are vast due to their proven successes in learning
non-linear relationships, they are also computationally
very demanding, which means a big upfront hardware
investment is needed and the learning time can be easily
in the order of days or weeks. A periodic relearning of
models due to degradation or changes of components as
well as parameter changes is necessary during the lifetime
of a WEC. The learning time is therefore an important,
especially if the number of models is large.

Also, the methods referenced typically focus on using
models that focus on specific physical behaviours of wind
turbines [5] [6] [7]. Among these the most prominent
aspects which should be monitored are wind power curves,
followed by nacelle misalignment. Both of these aspects
have a direct negative impact on the revenue due to the
ongoing loss of power production that can be observed if
one of these two aspects shows a malfunction.
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Fig. 2. Schematic representation of two LASSO regression models.
Sensors represent temperatures, speeds and voltages, the targets of
the blue lines signify the automatically chosen features, their width
represents the regression weight.

In contrast to these previous works, we address the
gap of monitoring as many functional aspects of a wind
turbine as possible while still keeping requirements like
memory usage, computing power and computing time
as low as possible. We are aware of the fact, that each
functional model created by our method might possibly be
improved by combining the knowledge of experts in the
application as well as the data mining domain. However,
we are not so much interested in improving on individual
model quality but rather in providing automatic monitoring
of as many aspects of a single turbine as possible with
as little effort as possible.

III. Approach

The problem can be restated as: Create an explicit
model for each individual sensor that predicts the expected
value for each time interval t using the measurements
of a subset of all the other sensors of the same time as
well as of the most recent past t − 1, t − 2 etc. We can
then use these models to compare the measurements
at each time step with the predictions. In the case of a
significant divergence we have three possible explanations:
1. the model is wrong and the predictions irrelevant; 2.
the measurements indeed differ from the expectation
indicating a qualitative change in the behaviour of the
component being measured (the model is correct and the
target sensor of the model is the cause of the change);
or 3. at least one of the sensors used as an input of the
model is defect.

As figure 3 shows, we employed a cyclical process
throughout our project that lead to higher quality results per
iteration: The creation of the models, their usage to create
predictions and identify divergences and the heuristics that
interprets these divergences to identify the most probable
root cause are fully automatic and will be described in
more details in the following subsections. The operator of
the parks then gets the results presented interactively. He
can use different visualizations to manually classify the
changes found and decide, whether and how to act upon
them. The final step is feeding back findings regarding
the quality of the anomalies found into settings for the
model learning steps. These changes to the settings can
be excluding sensors from being used as targets or inputs
in models as well as changes to thresholds.

The main mechanism we used is multiple linear re-
gression of sensor data. This method is computationally

Fig. 3. Our method follows a cyclic process: the models are learned
using the measurement data in a reference date range, the results are
interpreted by a data analyst and any necessary changes to the algorithm
parameters lead to a re-learning of models.

light, but it can’t capture non-linear relationships. Since
we are not interested in few but very accurate but rather in
finding many models representing the different functional
aspects present in a wind turbine, we found that the
reduced accuracy of using linear approximations does
not hurt the usefulness of the method. The regressions
try to represent each sensor value as a weighted sum of
an adequate selection of all the other available sensor’s
values. Figure 2 shows a schematic view of the main idea
of these regression models. It shows two models, one for
a temperature sensor and one for a wind speed sensor.

A. LASSO-Regression

Multiple linear regression for applications with many
input features tends to produce over fitted models (low bias,
high variance). Therefore, an essential step to produce
linear models with adequate low variance feature selection
is an essential step. Tibshirani published a method called
Least Absolute Shrinkage and Selection Operator [8] that
accomplishes both: it produces a multiple linear regression
with an automatic feature selection. It does this via a
regularization factor in the regression formula 1, where d
is the number of input dimensions, y the regression target,
X are the input values and λ the maximum sum of the
feature weights:

min
β ‖y −Xβ‖2s.t.

d∑
j=1

|βj | < λ (1)

The effect of λ is a shrinking of weights in β towards
zero, which effectively means that the majority of inputs
will get a zero weight, which means they are irrelavant to
predict the target value y.

Thanks to several improvements in the implementation
of the underlying optimization algorithm in [9] and [10]



AUTOMATIC ANOMALY DETECTION IN OFFSHORE WIND SCADA DATA 4

TABLE I. Example of a learned LASSO model to predict the sensor
"Coolant pump motor current 1". Columns show the sensor name of the
predictor, the time lag applied to the sensor time series and the relative

weight β.

Name Time lag Relative weight

Coolant Pressure 1 0 min 0.8856

Inverter Case Temperature -20 min 0.0477

Temperature Drawing-Off Air -20 min 0.0176

Axis 3 Contouring Error -20 min 0.0133

Temperature Drawing-Off Air 0 min 0.0127

Temperature Drawing-Off Air -10 min 0.0083

Axis 3 Battery Discharge Current -20 min 0.0067

Axis 1 Battery Discharge Current -10 min 0.0047

this method can be used to create hundreds of individual
LASSO regression models per minute.

B. Model Learning

Our model learning method has two steps: derive
additional features (“virtual sensors”) from the sensor
measurements and then learn multiple individual LASSO
models for each sensor. Each model can use data of
all sensors available. In addition, we add time lagged
versions of each sensors. This is useful for physical
processes that manifest themselves with time delays, like
for example temperature propagation in the nacelle or
pressure changes due to increases in currents of pumps.

For each sensor, we try to learn more than one model to
capture as many similarities between sensors as possible.
To avoid reusing the same preditive sensors, after having
learned a regression model we exclude the best predictors
of this model and run the model finding code again. If the
resulting model’s quality is too low, we discard this model.

Table I shows one learned model. The most prominent
relationship it captured is the direct linear dependency
of the current used by the coolant pump and the water
pressure produced. In addition, the algorithm selected
other sensors with decreasing weights, that don’t seem
to be related to the water pumping process. This is purely
because the learning data available resulted in slight model
quality improvements if these sensors were used in the
prediction. If these models were used primarily to learn
about the relationship of the sensors and the underlying
processes these additional predictor were not benefitial.
But, since we are interested in identifying sensors with
anomalous measurements, each additional model that
uses a sensor increases the chance, that this model will
produce diverging predictions which gives our root cause
finding heuristics more hints about the true culprit.

Algorithm 1 shows pseudo code for the details of the
learning step.

C. Root Cause Analysis

Figure 4 shows sample outputs of a selection of regres-
sion models learned for one wind turbine. Each column of
pixels represents a 10 minutes interval, each row shows

Algorithm 1 High-level algorithm - Learn models
1: Parameter |models| . how many models per sensor
2: Parameter quality . minimum R2 per regression

model
3: procedure CreateFeatures(columns)
4: features← columns \ {filtered columns}
5: Add up redundant component measurements
6: Add non-linear features (squares, roots, logs,...)
7: Add lagged features (columns of time t−1, t−2...)
8: Store statistical informations for each feature (av-

erage, standard deviation, extent,...)
9: return features

10: end procedure
11: procedure LearnModels(columns, features)
12: |learned| = 0
13: quality = 1.0
14: loop∀c ∈ columns
15: while Qualitymodel > quality ∧ |learned| <
|models| do

16: model← RegressionLASSO(features, c)
17: quality ← r2 of model
18: features′ ← remove best predictor of model
19: |learned|++
20: end while
21: end loop
22: end procedure
23: procedure Learn(columns)
24: features = CreateFeatures(columns)
25: return LearnModels(columns, features)
26: end procedure

the differences between an individual models’ prediction
and the real sensor value, blue meaning too low, orange
too high. Starting at noon in september, 16th there is a
behavioural change in the operation of the wind turbine,
indicated by multiple models that synchronously show
large divergences between prediction and measurement.

To transform the divergences observed to reportable
anomalies, first we need to detect the beginning of a
new phase of diverging models. Since the quality of
the automatically learned models may differ extensively
the divergences observed may be intermittent and not
be related to real errors in the components. Therefore,
the algorithm only signals an ongoing divergence if the
absolute value of the residual, the difference between
model prediction and real measurement, is greate than
a user defined threshold. The threshold we use is a
percentage of the spread of values we observed in the
learning time interval, so it is a relative measure for each
sensor.

In the second step we apply a heuristic which outputs
the most probable root cause for each diverging model.
We can’t simply assume that the sensor that is the target
of the current model is misbehaving. More often it is the
case that a sensor which is used as a predictor in other
models causes them to diverge.
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Fig. 4. Divergences between individual LASSO model predictions
and real measurements for one day. Each column represents a 10min
interval, each row shows the differences between a model prediction
and a sensor value, blue meaning too low, orange too high. The plot
shows that there are multiple time synchronized divergences starting
at september, 16th, indicating a change in the interplay of the WECs
components in comparison to the reference time interval used for model
learning.

The heuristic comprises mainly two rules: detect phys-
ical sensor defects and identify qualitatively changed
sensor measurements. If a sensor has a hardware defect,
meaning the sensor, its electrical connection or the cable
isolation is damaged, we typically observe a combination
of strongly shifted values and a reduced variance. We
understand that this effect is the result of the translation
of analogue measurements to digital values which results
in the reporting of physically implausible values because
the currents and voltages the sensor observes are either
too low or too high in comparison to normal operation. We
detect these sensor defects by comparing the variance
of the measurements of each sensor with the variance
observed in the learning time interval of the model as well
as comparing the value range. If a sensor is stuck, the
ratio of these values tends to become abnormally small.

If the first rules is not sufficient to explain the divergence
of a single model the second rule is used. It acts on the
observation, that, if a component changes its behaviour
its sensor measurements it will have a high correlation
with the residual of each model this sensor gets used
in. Normally, the differences of a models predictions and
the real measurements are unexplained random noise
without any discernible structure. If a sensor has any
visual changes in its behaviour these changes will be
visible in the "shape" of the residuals. The similarity of the
sensor’s values and the residual increases, which can be
observed as an increase in the correlation between these
two. If the correlation of a predictor with the residual of a
model is high it is flagged as a probable explanation of a
diverging model.

Both rules get applied to each diverging model. For each

Fig. 5. Screenshot of the anomalies presentation view in the monitoring
application.

sensor that is flagged as possibly changed we count the
number of distinct hints, where each model that outputs
this sensor as the most probable cause is one hint. If a
sensor has more hints than the user requires, it is flagged
as anomalous and will be reported to the user.

D. Result Presentation

The results are presented to the operator in a form
similar to figure 5. For every flagged anomaly the operator
may directly see the interactive measurements visualiza-
tion tool to inspect and compare sensor data. Also, the
application shows a button that presents more detailed
outputs of the evaluation heuristics of section III-C. This
view is useful to either see details about divergent models
that have too few hints to be flagged as an anomaly or to
manually retrace the decisions made by the root cause
analysis heuristics.

IV. Results

Of the 313 sensor per WEC, 250 were not constant
when the operating mode was "production". Constant
sensors were related to the braking system and other
components unused during normal operation, so they
were excluded for learning the behaviour of WECs during
production.

Given access to a history of four calendar months we
used the algorithm to learn approximately 750 models per
WEC, an average of three different models per sensor.
The average learning time per WEC was approximately
one minute. Many of the relationships between sensor
automatically discovered could be manually validated
by the operator. Models that were clearly wrong were
discarded and the misleading sensors excluded from
the model learning process (refer to figure 2 for details).
Reasons for wrong models were for example counters.
They were tended to be used to explain trends, because
the were monotonously increasing during the learning
data time interval. Afterwards, when using these models
to predict sensor values some of those counters were
reset by the WEC’s controller, which lead to the detection
a large number of misleading anomalies. We will test the
usefulness of counters as soon as a longer history of data
is available.
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The models learned were subsequently used to inform
the operator about changes in the WEC. Since we don’t
have a fully annotated dataset that lists every change
that should have been detected, we can’t give a detailed
validation regarding the recall of our method.

The precision of the results depends on the severity
of the detected change as indicated by the subjective
evaluation of the operator. The majority of anomalies could
be explained by sensor hardware defects. In fact, about
1-2% of all sensor per WEC were defect at any given time.
Some of the more interesting anomalies detected lead to
the discovery of leaks in the coolant system, increasing
temperature trends in rotor bearings, erratic pressure
measurements in the brake system and misalignments of
the nacelle relative to the wind. Many of these detected
anomalies were not previously known or reported by the
SCADA system.

All anomalies can be explained in terms of differences
in the operation of the WEC in comparison between
the time interval used for model learning and the most
recent past. However, not every change leads to an
insight that suggests hardware failures. Instead, they
could be explained by having used a non-representative
learning time interval. Chapter V-A gives more detailed
explanations.

Overall, the automatic anomaly detection lead to a
number of actionable insights over the course of spring
2016.

V. Conclusions

The automatic anomaly detection algorithm proved
useful for detecting a number of previously unknown
defects and performance degradation in the Global Tech I
offshore wind park. Even though the core of the method is
simple and the approximations found will not be the best
possible, the results that were produced proved invaluable
for improving the efficiency of the predictive maintenance
efforts of the GT1 offshore wind park. The anomalies
found can be coarsely divided in three groups: sensor
hardware defects (see fig. 6), irrelevant minor changes
and the most interesting group of component defects.

The second group comprises changes like increased
power consumption due to heating, minor drifts in volt-
ages and changes that can be explained by low quality
measurements. The most relevant anomalies show the
effects of real defects. Figure 7 shows the consequence
of a loss of heat conductivity of a heat sink. The figure
marks the exact time of the failure, showing a sharp rise
in the now unsufficiently cooled motors temperature and
a sinking temperature in the respective heat sink.

Another example is a leak in the coolant system in figure
8. The SCADA system signaled an error two days after
our anomaly detection system showed the change. The
reason for this time delay is the nature of the SCADA
alerting: a simple “too low” threshold for the pressure
is not enough in this case. The pressure present in the
coolant system stays within reasonable boundaries for

Fig. 6. Sensor defects often manifest themselves in physically
implausible values (too high or low, too stable or more volatile than
expected). In this example the temperature of gear oil is given in a range
higher than 800 degrees celcius with a temperature gradient of several
hundred degrees every 10 minutes.

Fig. 7. The thermal conductivity of the connection of a heatsink and the
motor to be cooled broke down, resulting in higher motor temperatures

several days before it finally drops enough for the SCADA
monitoring system to react.

A. Lessons Learned

“Error free” reference date ranges are hard to find.
The park officially opened in September 2015. Since then,
parameters get changed on a near daily basis. Each new
setting may also change the relationship between different
sensor. We do not have a long data history, yet.
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Fig. 8. A seal failed in the coolant system, which resulted in a gradual
pressure loss.

Not every model makes sense. Some sensors output
by the SCADA system represent parameter settings
rather than measurements. Trying to predict settings
from measurements lead to low quality models. We
explicitely removed these sensors from the model learning
to increase the models quality.
The more models, the better. Some changes in the
behaviour of the WEC will affect several components in a
similar way. If we only learned the relationship between
these components we might not get an anomaly if there
is a change related to it. If we learn more than one model
per sensor, we have a higher chance of learning different
interdependencies, which in turn means a higher chance
of anomalies.
Performant interactive data visualizations are essen-
tial. The automatic detection of anomalies is just the first,
but an essential, step to identify problems in a WEC. Our
system does not know about the technical processes and
physical interdependencies of the turbines. This means, it
can’t classify the changes as erroneous or normal. This
decision is up to the data analyst. In our experience,
low latency during interactive investigations increases the
chance that the data analyst can find an interpretation of
anomalies detected quickly.
Redundant components need to be added up. In our
WECs there are several redundant components like motors
and pumps. They are operated in an alternating fashion.
For the purpose of our method, they really represent one
functional component of the WEC. Since our method
compares sensor time series for each time step, we had to
add up the sensor values of these redundant components
(for example we replaced the “motor current oil pump A”
and “motor current oil pump B” with their sum).
Not all anomalies necessarily indicate a defect. A
number of anomalies detected were the result of having
learned from unrepresentative data due to the short history
of the offshore park. For example, the power usage of

components in the nacelle increased during cold weather
periods, because heating was activated. This heating was
not active during our reference time interval, so apparently
the relationship between the currents and other sensor
were flagged as anomalous. Other examples of anomalies
that were not interesting were changes in the distribution
of voltages and temperatures, that could be explained
by parameter changes which lead to changed operation
modes.
Sensors are unreliable. Sensors develop malfunctions
the same way as any other hardware component of a WEC.
We saw an error probability of up to 2% per sensor at any
given time. The problem is, that the detection of errors
relies on reliable sensors in the first place. A high quality
detection algorithm for sensor defects proved essential for
the viability of any automatic anomaly detection procedure.
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