

A concept for modelling quantitative wind climatology for wind energy applications at heights above 100 m

T. Leiding¹, A. Walter¹, J.D. Hessel¹, M. Barth², A. Ziemann², C. Bernhofer²

¹ Deutscher Wetterdienst, Offenbach ² TU Dresden, Chair of Meteorology, Dresden

Project QuWind100 | WindEurope Summit 27.09.2016

Content

- Motivation
- Objectives
- Model concept
- Preliminary Work
- Field campaign and Cooperation
- Summary

Status: Wind climatologies for wind energy applications

No consistently mapping of wind field data in heights above 100 m available

Statistical Wind field Model (SWM, developed by DWD)

WIND

DATA

OF SPECIFIC LOCATION

989

Petersen

nnd

e ē

Challenge: increasing rotor diameter and mean hub height

Characteristics of wind profile in diurnal/seasonal variation

Simulated wind profiles for different days of a year (colored lines) in comparison with the logarithmic wind profile (wind in 10 m height as reference value)

according to Ziemann and Goldberg, 2015, Barth et al. 2016

Project QuWind100

Quantitative wind climatology for wind energy applications in heights above 100 m

Project partners: TU Dresden, Chair of Meteorology (Coordination) Deutscher Wetterdienst, Offenbach

Application partner: EVO AG Offenbach

Duration: 01/2016 – 12/2018

Supported by:

Projektträger Jülich Forschungszentrum Jülich

on the basis of a decision by the German Bundestag

Objectives of QuWind100

Mapping and database of wind climatology will be derived for heights between 100 m to 200 m

- 1. Linking 3D weather model of DWD in climate mode (COSMO CLM) and transient 2D boundary layer model of TU Dresden (HIRVAC2D)
- 2. Model simulation using appropriate land use scenario and climate forcing scenario with boundary conditions for 3 climate periods
- 3. Evaluate the results of model chain with appropriate measurement data and reanalysis data

Model concept atmosphere reference present 1981-2010 1981-2010 data base Climate projections reanalysis FRAinterim RCP8.5 from FURO-CORDEX land use future (2030) present source: Bundesinstitut für Bau-, Stadt- und Raumforschung (BBSR), Project CC-LandStraD (Hoymann and Goetzke, 2014)

orography

DWD

Preliminary work DWD - TRY Project

Interpolation cannot be performed only by observations \rightarrow Simulation with CCLM

COSMO CLM (a,c) ; (b) SYNOP station observations (12.01.1995, 13 MEZ). a) model output; c) after bias correction and aerodynamic roughness modification

Comparison with wind measurements

- Collect and analyse existing wind data (> 50 m)
- Extensive measurement campaign:
 - SODAR
 - tethered balloon (Tharandt)
 - data from wind farm site (Hunsrück)

Cooperation with EVO AG

 Compare and evaluate the predicted energy yield potential based on current methods and results based on the new wind climatology

Summary - Intended results of QuWind100

No consistently mapping of wind field data in heights > 100 m available

Wind atlas	Database	Statistical model
evaluated Mapping of	evaluated numerical results	for downscaling CCLM wind
statistical parameters of	for wind potential (horizontal	data (application for
wind fields in various	resolution 100 m)	mesoscale model data in
heights for Germany	→ Derive wind field density	the future)

Thank you for your attention!

