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Abstract—The work undertaken in this research focuses
on advanced condition monitoring and fault detection
methods for wind turbines (WTs). Fourier Transform
(FFT) and Short Time Fourier transform (STFT) algo-
rithms are proposed to effectively extract fault signatures
in generator current signals (GCS) for WT fault diagnosis.
With this aim, a WT model has been implemented in the
MATLAB/Simulink environment to validate the effective-
ness of the proposed algorithms. The results obtained with
this model are validated with experimental data measured
from a physical test rig. The detection of rotor eccentricity
is discussed and conclusions drawn on the applicability
of frequency tracking algorithms. The newly developed
algorithms are compared with a published method to
establish their advantages and limitations.

Index Terms—Wind turbine, Generator, Condition mon-
itoring, Current Signature, Fault signature, Fault detec-
tion, Diagnosis.

I. INTRODUCTION

Most components in wind turbines (WTs) are
subjected to different sorts of failures during the
operation, including blades, yaw systems, gearboxes
rotor and shaft, bearings, generators, etc. The faulty
component in WTs might change the main char-
acteristics in the monitored signal. Traditionally,
WTs condition monitoring system (CMS) is super-
vised using vibration signals but measuring such
mechanical quantities is often expensive. Indeed,
vibration sensors such as piezoelectric accelerom-
eters and associated load amplifier are often ex-
pensive. Moreover, the ability of a clear detection
of mechanical faults by vibration measurements
potentially depends in the sensor locations [1]. For
example, accelerometers need to be mounted near
to each possible faulty component of the WT. To
overcome this problem, the detection could be based

on the measurement of stator currents which are
already available for control purposes which means
no additional sensors or data acquisition devices
are needed [2]. However, there are challenges in
using current measurements for WT CMS and fault
detection. First, it is a challenge to extract WT
fault signatures from non-stationary current mea-
surements, due to variable-speed operating condi-
tions of WTs. Moreover, the useful information in
current measurements for WT usually has a low
signal to noise ratio, and thus very difficult to extract
without a dedicated signal processing.

CMS can be used to help schedule maintenance
and reduce downtime [3]. However, many of these
techniques evaluate WT state of health in terms of
a binary state, i.e. either faulty or not. They provide
technical insights and detect early abnormalities, but
cannot forecast the expected degree of deterioration
over a particular time frame [4]. For example, a
gearbox is either broken and needs replacement
or fixing, or it is fine until the next scheduled
maintenance operation. CMS are carried out based
using knowledge of the characteristics of signals
obtained from a turbine. These signals are often
non-stationary signals whose characteristics change
over time due to the time-varying nature of machine
operations and fault effects [5]. To date, the majority
of signal processing techniques used in the condition
monitoring of rotating machinery have been devel-
oped based on stationary signals and cannot reveal
the time information of any frequency changes.
To enable the benefits of a truly condition-based
maintenance philosophy to be realized, robust, ac-
curate and reliable algorithms, which provide main-
tenance personnel with the necessary information to



make informed maintenance decisions, will be key.
The work undertaken in this research focuses on
advanced signal processing and statistical analysis
techniques to lead to better remaining useful life
prediction which will results in a much optimized
maintenance schedule and less unscheduled main-
tenance events. The proposed method is based on
time-frequency analysis to capture the fault fre-
quencies from the measured signal and monitor the
fault frequencies over time. This will provide the
capability to potentially take historical and current
data to create long-term forecasts of future asset
conditions.

The following approach was taken in this paper:

• The data used in this work is recorded from
a physical test rig at Durham University. De-
tails of the data and test rig are presented
in [4]. During the tests, rotor unbalance fault
levels were implemented on the test rig by
successively adding two additional external re-
sistances to phase A of the rotor circuit through
an external load bank. They correspond to two
levels of rotor unbalance of 21% and 43%,
respectively, given as a percentage of the rotor
balanced phase resistance;

• A WT generator simulation model was also
developed and validated with the experimental
data in order to demonstrate the kind of results
expected under a range of operating condi-
tions. The model allows for certain nonlinear
and time-varying characteristics and takes into
account varying wind speeds similar to those
experienced by WTs;

• Other aspects of this work are related to the
use of the Gabor transform for time- frequency
analysis. Another aspect is the observation of
the change of the fault signature for different
wind speed and fault level cases. This observa-
tion was connected theoretically with what is
known as fault prognostics process;

• Finally, the Gabor transform for time- fre-
quency analysis was proposed as a potential
method for detecting early anomalies in WT
generator operation;

II. FAULT SIGNATURE ANALYSIS IN
WIND TURBINE CURRENT SIGNALS

Mechanical faults such as unbalanced load and
shaft misalignments essentially create a rotor eccen-
tricity inside the motor [6]. These types of faults
introduce sideband harmonics around the funda-
mental frequency in the motor current spectrum.
Potentially, these fault signatures could be used to
detect incipient failure if they can be clearly de-
tected during the early stages of a developing fault.
It has been reported that during a rotor eccentricity
event, the sideband currents are given by [7]

fecc,d =

(
1± k(1− s)

p

)
.f (1)

Where fecc,d and f are the rotor fault and fun-
damental frequency components for a doubly fed
induction generator (DFIG), respectively, k is an
integer (k=1, 2, 3, ...) and p the number of pole
pairs.

III. SIGNAL PROCESSING TECHNIQUES
FOR FAULT DETECTION

Signal processing is used in WT fault studies
and is becoming an important class of tools to
facilitate the extraction of fault-related features in
the monitored signals, and then, the fault detection
can be automated via threshold comparison or prob-
ability analysis. The fault level and location can
then be identified by a classification method, such
as artificial neural networks, fuzzy logic, support
vector machines, etc. A key aspect of a reliable and
efficient condition monitoring technique in WTs is
determining which parameters should be measured
and to what accuracy, as well as which signal pro-
cessing methods provide the best characterization
and analysis of the signals to be investigated.

A. Fast Fourier Transform
The Fast Fourier Transform (FFT) is one of the

most well-known methods in the area of signal
processing and has been widely used in fault di-
agnosis for Motors. The FFT algorithm is used to
convert the time domain signal into a frequency
domain signal in order to extract features related
with characteristic defects. Fig. 1 shows a Fourier
Transform of the stator current from the Durham
test generator operating in a normal healthy state.



The upper plot is actual measured data and the
lower plot is the WT generator simulation model
set up using similar parameters to the test rig. The
generator was driven close to a fixed rotational
speed corresponding to a fixed wind speed, but with
a degree of variation corresponding to a certain
simulated level of wind turbulence.
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Fig. 1: The FFT of GCSs for the healthy case.

Fig. 2: The FFT of GCSs for the rotor unbalance
case.

As can be seen in Fig. 1, there are unexpected
harmonics around the even and odd harmonics even
when operating in a healthy state (no unbalance).
This might be caused by manufacturing and instal-
lation errors or might be frequency components that
are apparent when the generator is first turned on.

Fig. 2 shows a similar spectrum, but this time the
rotor is subject to a degree of unbalance. Although
the amplitudes of those frequency components in the
rotor unbalance case shown in Fig. 2 are different
from those in Fig. 1, it is difficult to distinguish
the two cases. The fault signature frequencies are
defined and labelled in Fig. 2 according to Equation
(1).

B. Short Time Fourier Transform (STFT)

The limitations of the direct application of the
Fourier transform methods, and their inability to
localize a signal in both the time and frequency
domains, was realized very early on in the
development of radar and sonar detection. The
Hungarian electrical engineer and physicist Gabor
Denes (Physics Nobel Prize in 1971 for the
discovery of holography in 1947) was the first
person to propose a formal method for localizing
both time and frequency [8]. His method is
known as the short-time Fourier transform (STFT),
STFT of a continuous-time signal x(t) is defined as:

STFT (f, τ) =

∞∫
−∞

x(t)g(t− τ)e−j2πft dt (2)

where g(t− τ) is the window function whose posi-
tion is translated in time by τ . The integration over
the parameter τ slides the time-filtering window
along the entire signal in order to pick out the
frequency information at each instant of time. Fig.
3 gives a clear illustration of how the time filtering
scheme of STFT works. In this figure, the time
filtering window is centered at with a width a.
Thus the frequency content of a window of time is
extracted and is modified to extract the frequencies
of another window. The definition of the STFT
captures the entire time-frequency content of the
signal. Indeed, the STFT is a function of the two
variables time and frequency.



Fig. 3: Graphical illustration of the STFT for ex-
tracting the time-frequency content of a measured
signal.

The key now for the STFT is to multiply the
time filter function with the original signal in order
to produce a windowed section of the signal. The
Fourier transform of the windowed section then
gives the local frequency content in time. Fig. 4
shows the generated spectrogram for the measured
stator current signal for the healthy test rig genera-
tor. It is clearly seen that the measured time signal
is comprised of various frequency components that
are seen throughout the entire time.

Fig. 4: The STFT of GCSs for the healthy case.

Fig. 5: The FFT of GCSs for the rotor unbalance
case.

Figure 5 shows the stator current spectrogram
after rotor unbalance conditions were applied. Al-
though the fault characteristic frequency compo-
nents are combined and buried in other dominant
frequency components of the current signal that
are irrelevant to the fault, the STFT captures the
moment in time when the fault actually occurs at
t=8 sec. This is clearly the main disadvantage of the
STFT, and their capability to localize the frequency
components of the measured signal in time domain,
when compared to the Fourier transform. One could
admit that this is a very apparent indication of the
fault presence using this simple approach. In order
to have a clear understanding of how we could use
the STFT for faults prognosis, the same datasets are
used again in the next example (Figure 6), this time
after applying transient rotor unbalance fault from
t=20sec to t=30 sec to see if we can still forecast
the fault over time. What is shown here is that the
fault signature frequencies are seen only during the
time between (20-30 sec). So it is clear from this
simulation, that the proposed method can be used to
provide the capability to take historical and current
data to create highly accurate long-term forecasts of
future asset conditions.



Fig. 6: The STFT of simulated GCSs for the tran-
sient fault.

IV. CONCLUSION

A new approach based on time-frequency anal-
ysis of signals has been proposed, for fault diag-
nosis WTs to lead to better remaining useful life
prediction which will result in a much optimized
maintenance schedule and less unscheduled mainte-
nance events. The simplest novelty in this work that
the use of STFT for time- frequency analysis as a
potential method for detecting and forecasting early
abnormalities over a substantial time. Preliminary
simulation results presented highlight its advantages
over the conventional Fourier transform approach,
and go on to indicate its potential and suitability.
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