Utilizing fluctuating feed-in characteristics of WEC for grid integration

Dr.-Ing. Mark Meuser M. Sc. Christoph Schönhofen

Wind Europe Summit 2016 | Hamburg | 27.09.2016

Introduction

- Significant increase of number / installed power of wind energy converters (WEC) in electrical distribution grids (mainly MV)
- Local concentration of installed power driven by wind conditions etc.
- Especially in windy regions the further development of WEC-Installations is limited by available capacities for grid connection
- Conventional method: grid reinforcements driven by single grid connection request or already foreseeable grid connection projects
 - High costs and long operating lifetimes of grid components vs.
 - Future local development and especially deployment hardly predictable
 - ightarrow Risk of developing long term inefficient grid structures
- Improved utilization of existing grid structures
 - Flexibility
 - Cost efficiency
 - Short-term implementable solutions

Analysis

- Limiting criteria for grid connection of WEC typically given by boundaries for steadystate grid voltage and (thermal) loading of grid components
 - Limits for steady-state grid voltage acc. 50160 given for 99% of 10min.-mean-RMS-values
 - Loading capability of earth-buried cables/transformers depending on load characteristics with thermal inertia of several hours → time dependency and modelling of state transition
 - Load flows influenced by
 - Fluctuating active power feed-in of WEC and other generating plants (PV etc.)
 - Residential and industrial consumers
 - ightarrow Consideration of mutual dependencies by correlation
 - Controlled reactive power provision of WEC/PV
 - Tab-position of OLTCs etc.
- Time-dependent probabilistic approach with discrete time steps of 10-15min. and thermal models for state transition

Analysis

Grid integration methods considered

- Improved utilization of existing options for grid operation
 - Improved control concepts for transformers with OLTC
 - Wide-area-control (voltage regulation at distant network nodes)
 - Load flow dependent voltage set-point
 - Extension of range and optimised control of reactive power provision by WEC
 - Improved utilization of loading capability reserves of grid components given by thermal inertia especially of earth buried lines and transformers
- Introduction of additional options for grid operation by actively controlled (variable) components
 - Use of MV / LV transformers with OLTC

Methodology

Exemplary results

Total hosting capacity for WEC / PV in an exemplary rural MV-grid

with consideration of temporary overloading capability

- Typical extended rural grid
 - \rightarrow Initially hosting capacity limited by steady-state voltage boundaries
- Innovative voltage regulation strategies improve HC until limits of loading capability are reached (if voltage issues are entirely resolved)

Consideration of temporary overload capabilities enables further increase of HC without any additional costs

Meuser/Schönhofen | Utilizing fluctuating feed-in characteristics | 27.09.2016 | Wind Europe Summit

Load factor under consideration of volatile load characteristics

- Conventional daily cyclic loading characteristic only valid for conventional distribution networks without significant share of WEC / PV
- Fluctuating feed-in characteristics of wind turbines and photovoltaic systems lead to deviating load profiles

- Conventionally defined load factor not appropriate when assessing the real loading capacity of grid components as earth-buried lines / transformers
- Solution: Determination of the maximum permissible loading, taking into account thermal inertia of (earth-buried) lines and transformers

Meuser/Schönhofen | Utilizing fluctuating feed-in characteristics | 27.09.2016 | Wind Europe Summit

Summary

- Especially in windy regions the further development of WEC-Installations is limited by available capacities for grid connection
- Conventional grid reinforcements are cost-intensive, cause significant project delays and may lead to long term inefficient grid structures even if embedded in an appropriate long term planning scheme
- Improved utilization of existing network structures using the fluctuating feed-in characteristics of WECs
 - Improved transformer control concepts
 - Temporary overloading capabilities of earth-buried cables and transformers
 - Extension of range and optimized control of reactive power provision by WEC
 - MV / LV transformers with OLTC
- Limiting criteria for grid connection of WEC typically given by boundaries for static grid voltage and (thermal) loading of grid components
- Time-dependent probabilistic approach with discrete time steps of 10-15min. and thermal models for state transition
- Results
 - Conventional load factor not appropriate for assessing loading capability of grid components in distribution grids with a significant share of WEC / PV
 - Innovative voltage control concepts and consideration of temporary overloading capabilities allow significantly increased hosting capacity in a wide variety of distribution grids

Thank you for your attention!

Dr.-Ing. Mark Meuser (mark.meuser@fgh-zertifizierung.de) M. Sc. Christoph Schönhofen (christoph.schoenhofen@fgh-ma.de)

Wind Europe Summit 2016 | Hamburg | 27.09.2016

BACKUP

Specific criteria for the assessment of grid connection of WEC

Thermal current carrying capacity

- Assessment of grid capacity for continuous load (load factor = 1)
- Static voltage limits (according to EN 50160)
 - Limits for grid voltage at the point of common coupling of customer installations
 - Assessment based on statistical criteria

Short-circuit current

- Grid coupling via converters: short-circuit current contribution of WEC rather small
- \rightarrow Simple countermeasures: short-circuit-current-limiters

Grid disturbances

- Fast (switching) changes in voltage / flicker
- Harmonics / interharmonics / ripple-control
- \rightarrow Use of filters / modification of inverter frequency and/or inverter control

Limiting criteria for grid connection of WEC typically given by limits for static grid voltage and thermal loading of grid components

