Orientation correction of wind direction measurements by means of staring Lidar

Michael Schmidt, Juan Jose Trujillo, Hauke Beck and Martin Kühn WE-Sys - ForWind - Carl von Ossietzky University Oldenburg

michael.schmidt@forwind.de

WindEurope Summit 2016

Any problem here for a Lidar?

www.windindustrie-in-deutschland.de

Any problem here for a Lidar?

Yes, we need highly accurate direction data to calculate the correct Lidar wind speed.

The situation now and how to improve it

long-range Lidar, PPI-, RHI-scans, line-of-sight speed Ultrasonic anemometer (e.g.), wind speed magnitude and direction usually misaligned by some degrees

The situation now and how to improve it

The situation now and how to improve it

Alignment error introduces Lidar wind speed error

 $\begin{array}{l} \mathsf{Error} \sim \mathsf{1/\!cos^2}(\!\alpha) \times \Delta \alpha \\ \uparrow \mathsf{misalignment} \end{array}$

"Error theory" in EWEA 2016 paper: Orientation correction of wind direction measurements by means of staring Lidar

Alignment error introduces Lidar wind speed error

 $\begin{array}{l} \mathsf{Error} \sim \mathsf{1/\!cos^2}(\!\alpha) \times \Delta \alpha \\ \uparrow \mathsf{misalignment} \end{array}$

"Error theory" in EWEA 2016 paper: Orientation correction of wind direction measurements by means of staring Lidar

Two benefits of the method:

- a) improved Lidar data quality,
- b) accurate information about wind direction (error < 1°).

V_{los} = projection of wind speed magnitude on line-of-sight

UND CARL VON UNIVERSITÄT UNIVERSITÄT

V_{los} = projection of wind speed magnitude on line-of-sight

Ultrasonic anemometer ("Sonic") in-situ, and Lidar from far distance: measure at same point.

if wind speed constant

V_{los} = projection of wind speed magnitude on line-of-sight

UNIVERSITE OLDENBURG

Ultrasonic anemometer ("Sonic") in-situ, and Lidar from far distance: measure at same point.

if wind speed constant $\rightarrow V_{los}$ sinusoidal

Shift of the $V_{los} - sinusoidal$

Maximum V_{los} at line-of-sight: sinusoidal shifted by Φ ,

Shift of the $V_{los} - sinusoidal$

Maximum V_{los} at line-of-sight: sinusoidal shifted by Φ ,

different orientations of devices will introduce shift $\Delta \alpha$,

Shift of the $V_{los} - sinusoidal$

Maximum V_{los} at line-of-sight: sinusoidal shifted by Φ ,

different orientations of devices will introduce shift $\Delta \alpha$,

 α : shift of wind direction scale by $\Delta \alpha$ maps the black curve over the blue one.

Shift of the V_{los} – sinusoidal

Tasks:

1. Find $\Delta \alpha$,

2. find out: which method is misaligned, or is the direction axis shifted?

Measurement setting in wind farm alpha ventus

 $12\times5\text{-MW}$ turbines in North Sea,

Leosphere Windcube 200S-600 long-range lidar on substation,

Gill R3-50 Sonic at FINO 1 mast

Measurement setting in wind farm alpha ventus

 $12\times5\text{-}MW$ turbines in North Sea,

Leosphere Windcube 200S-600 long-range lidar on substation,

Gill R3-50 Sonic at FINO 1 mast,

Lidar to Sonic distance: 2864 m,

line-of-sight direction: 306.47° \pm 0.28° (compass system).

1243×10-min mean values (\approx 10 days) measured in range 140°-300°.

*V*_{los,Sonic} is fine, isn't it?

line-of-sight (306.47°) \rightarrow V_{los,Sonic}.

Vlos, Sonic is fine, isn't it?

*V*_{los,Sonic} is fine, isn't it? It's not.

Max(V_{los,Lidar}) at 302.87°: impossible!

*V*_{los,Sonic} is fine, isn't it? It's not.

Max(V_{los,Lidar}) at 302.87°: impossible!

The **Sonic is misaligned**, and therefore the scale "Sonic wind direction" is shifted.

Line-of-sight direction is well-known \rightarrow the Lidar is the reference method.

*V*_{los,Sonic} is fine, isn't it? It's not.

Max(V_{los,Lidar}) at 302.87°: impossible!

The **Sonic is misaligned**, and therefore the scale "Sonic wind direction" is shifted.

Line-of-sight direction is well-known \rightarrow the Lidar is the reference method.

Apply method to all wind speed bins: $\overline{\Delta \alpha} = -3.69^{\circ}$.

Vlos: Lidar vs. Sonic

Lidar-Sonic bias in sector $170^{\circ}-210^{\circ}$ (no turbine wake, apart from line-of-sight \perp wind direction) before alignment:

-0.95*m/s*

Vlos: Lidar vs. Sonic

Lidar-Sonic bias in sector $170^{\circ}-210^{\circ}$ (no turbine wake, apart from line-of-sight \perp wind direction) before alignment:

-0.95*m/s*

Wind speed: Lidar vs. Sonic

After aligning,

- Lidar vs. Sonic bias in sector 170° - 210° is $\approx 0 m/s$,

Wind speed: Lidar vs. Sonic

After aligning,

- Lidar vs. Sonic bias in sector 170° 210° is $\approx 0 m/s$,
- close to 216.47°, the error is still big due to the line-of-sight \perp wind direction problem, and

Wind speed: Lidar vs. Sonic

After aligning,

- Lidar vs. Sonic bias in sector 170° 210° is $\approx 0 m/s$,
- close to 216.47°, the error is still big due to the line-of-sight \perp wind direction problem, and
- turbine AV 7's wake (but not AV 10) affects Lidar stronger than Sonic data (by max. 1*m/s*), due to:

Sonic's point measurement vs. Lidar's volume averaging meas.

Misalignment $\Delta \alpha \rightarrow \text{LiDAR}$ wind speed error

Lidar's wind speed error grows up to infinity,

Misalignment $\Delta \alpha \rightarrow \text{LiDAR}$ wind speed error

Lidar's wind speed error grows up to infinity,

after alignment, the wind direction range of usable Lidar data is extended from 0° to $80 - 85^{\circ}$.

Conclusions

A long-range Lidar – operated in staring mode – is able to reduce direction measurement errors to below $<1^{\circ}.$

Conclusions

A long-range Lidar – operated in staring mode – is able to reduce direction measurement errors to below $<1^{\circ}$.

After aligning of direction data, we don't find a significant Lidar-to-sonic bias anymore.

Conclusions

A long-range Lidar – operated in staring mode – is able to reduce direction measurement errors to below $< 1^{\circ}$.

After aligning of direction data, we don't find a significant Lidar-to-sonic bias anymore.

Outlook:

- Minimum number of data for successful alignment?
- Effect of met mast shadow on Lidar data?
- Useful to determine wind speed- and direction-depending misalignment angles?

The project "GW Wakes" is funded by the Federal Ministry for Economic Affairs and Energy (FKZ 0325397A-B) under a resolution of the German Parliament.

We thank

Deutsche Offshore-Testfeld und Infrastruktur GmbH & Co. KG (DOTI), and Forschungs- und Entwicklungszentrum Fachhochschule Kiel GmbH

for their support and the possibility to access their substation, and

Deutsches Windenergie Institut (UL-DEWI)

for providing the ultrasonic anemometer data and for the most valuable discussions.

michael.schmidt@forwind.de

