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Abstract. This paper discusses about the wake structure of wind turbine via the use of URANS 

and Quasi-DNS, focussing on the tip vortex breakdown. The moving overlapped structured grids 

CFD Solver based on a fourth-order reconstruction and an all-speed scheme, rFlow3D is used 

for capturing the characteristics of tip vortices. The results from the Model Experiments in 

Controlled Conditions project (MEXICO) was accordingly selected for executing wake 

simulations through the variation of tip speed ratio (TSR); in an operational wind turbine, TSR 

often changes in value. Therefore, it is important to assess the potential effects of TSR on wake 

characteristics. The results obtained by changing TSR show the variations of the position of wake 

breakdown and wake expansion. The correspondence between vortices and radial/rotational flow 
is also confirmed.  

1.  Introduction 

For economical use of wind turbine, it is important to install the wind turbines collectively at one site 

(wind farm). The collective layout leads to good effects such as the reductions of the total length of 

power transmission lines, the load for maintenance etc... However, the wake behind the wind turbines 

is known to cause major problems when the turbines are in a collective layout. A wind turbine converts 

the kinetic energy of wind into mechanical energy; consequently, the speed of the wind in the wake 

region is greatly reduced. Moreover, the existence of tip vortices impedes momentum exchange between 

the wake and the main stream [1]. Therefore, it needs a long distance to recover the wake velocity. In 

addition, when these vortices directly flow in a subsequent wind turbine, its fatigue damage gets 

accumulated faster. For the above reasons, each wind turbine in a wind farm is placed away from the 

others.  From past researches and some experiences, distance of 10D (D is the diameter of the wind 

turbines) between two rotors is recommended [2]. However, this criterion is determined empirically, 

and the optimum distance is supposed to vary depending on the operational conditions. Therefore, the 

wake structure must be investigated by using scientific approaches for the optimum layout of the wind 

farms. 

Experimental or/and numerical approaches have been considered to study the wake structure. The 

experimental approaches’ results typically tend to be reliable because it can deal with the actual 

phenomena. However, future commercial wind turbine becomes increasingly large, and experimentally 

performing the grasping of the flow will become difficult in view of the scaling law in the flow dynamics 

such as the Reynolds number problems.  At present, the rotor diameters of the commercial wind turbines 

are approximately 100 m and will increase to approximately 200 m in the future, making it very 



 

 

 

 

 

 

expensive to perform experiments. Alternatively, numerical studies do not require such construction 

costs. In addition, the entire field data can be obtained via computational fluid dynamics (CFD). At 

present, CFD can predict the average flow fields around the wind turbines and become a tool for 

understanding the wake structure. Vermeer et al. [3] summarized several methods of CFD for the wake 

simulation. They reported that Reynolds-averaged Navier-Stokes (RANS) simulation was able to give 

fair results in attached aerofoil flow conditions. On the other hand, Large Eddy Simulation (LES) or 

Detached Eddy Simulation (DES) were better to simulate separated aerofoil flow condition. Up to the 

present time, many researchers have developed the CFD methods for wake simulation and studied about 

various conditions to reproduce the detailed structure of wake. Troldborg et al. [4] investigated the effect 

of CFD models for wind turbine on the wake such as actuator disc (AD) and actuator line (AL) models. 

The distribution of vortices is greatly influenced by the type of rotor modelling  and it is significant to 

resolve the rotor geometry for capturing the wake vortices. AbdelSalam et al. [5] also reported the 

advantages of fully resolving the rotor geometry in terms of prediction of the wake velocity. Modelling 

of the natural wind is also important to simulate actual operations. Li et al. [6] have implemented the 

velocity fluctuations into the inflow condition to model the natural wind. Considering the disturbance 

of the natural wind, it is understood that wake recovery gets faster than uniform flow.Nilay et al. [7] 

have studied the effect of wind shear on wake flow structure. The existence of a wind sheer causes 

vortices become close each other, which increases the mutual interaction between vortices. These CFD 

results can be used to develop wake models oriented to predict velocity deficits.  Göçmen et al. [8] 

reviewed the wake models developed at DTU. Compared with the field test and CFD results, they show 

the availability of the wake models for considering the wind farm layout in terms of velocity deficits. 

Although wake models are getting reliable to use in industry, it has a difficulty for reproducing the 

values of velocity deficit when inflows fluctuate and the turbulence intensity get increased. To be more 

precise, understanding and modelling of vortex breakdown is important because it generates a large 

velocity gradient. Discussion on the behaviour of the tip vortices is ongoing and it needs to be solved 

by using CFD. 

In this study, the CFD simulations of the wind turbine were conducted to study the vortex structure 

and the breakdown process by using a higher order scheme and dynamic calculations. To consider 

various operational conditions, the tip speed ratio 𝜆 (TSR) is changed and the simulations are executed. 

It is carried out to investigate the relation between TSR and the tip vortex structures.  

 

2.  Approach 

2.1.  Case study 

The model wind turbine that was previously used in the Model Experiments in Controlled Conditions 

(MEXICO) project, was selected as case study [9-12]. One of the special features of this test is that it 

includes particle image velocimetry (PIV) measurements of near-wake regions. Therefore, such data 

can be used to validate CFD results of velocity distributions and/or vorticity distributions. The 

specifications for the MEXICO experiment are shown in table 1. The Reynolds number is based on the 

characteristic chord length (at 82% spanwise position) and the rotational speed of blade tip. Several 

researchers have previously endeavoured to simulate the MEXICO rotor by CFD. For example, Micallef 

et al. [13] studied the effects of yawed conditions on wake characteristics and Carrion et al. [14] 

executed TSR cases of MEXICO using a compressible multi block solver and an all-Mach scheme; both 

of their calculations ultimately reproduced the flow around the MEXICO rotor with precision. Moreover, 

Réthoré et al. [15] investigated wind tunnel effects on wake characteristics in MEXICO experiments, 

concluding that the impact of wind tunnels on wakes is not significant in PIV measurement region.   

 

 

 

 



 

 

 

 

 

 

 

Table 1. Specifications of MEXICO experiments [9]. 

Rotor diameter (D) [m] 4.5 

Number of blades [-] 3 

Speed of main flow[m/s] 10, 15, 24 

Tip speed ratio [-] 10, 6.67, 4.17 

Rated rotational speed [rpm] 424.5 

chord length [m] 0.113 (at 82% span-wise position) 

Reynolds number 8×105  

 

2.2.  Analysis code 

The Moving Overlapped Structured Grids CFD Solver rFlow3D [16] is used for wake analysis. rFlow3D 

was developed by the Japanese Aerospace eXploration Agency (JAXA) for analysing rotorcrafts such 

as helicopters. The governing equations are the compressible Navier–Stokes equations, which are 

discretised using a finite volume method (FVM). rFlow3D can address moving overlapped grids; thus, 

it can simulate the blade rotations and deformations. By using an all-speed numerical scheme SLAU 

[17], dissipations in low-speed area such as root of blades can be kept small. Furthermore, rFlow3D is 

good at capturing the blade tip vortices by adapting a fourth order reconstruction method FCMT [16]  

2.3.  Computational grid 

The Computational grid is composed of two background Cartesian grids and three rotating blade grids 

for analysis. Furthermore, an inner background grid, which has high grid resolution was established to 

capture the small structure of the tip vortices. The grid covers from 0.5 rotor diameters upwind of the 

rotor plane to 10 rotor diameters downwind. Details of the computational grids are presented in table 2 

and figure 1. x, y and z denote the axial, horizontal and vertical direction each other. The origin of the 

coordinate is the rotational canter of the wind turbine.  

 

Table 2. Computational grid information. 

 Blade Grid Inner Background Grid Outer Background Grid 

Number of partition 

(x×y×z) 
121 × 121 × 61 1307 × 187 × 187 151 × 101 × 101 

Computational domaina  - 10.5𝐷 × 1.3𝐷 × 1.3𝐷 14.5𝐷 × 5𝐷 × 5𝐷 

Minimum spaceb 𝑦+ ≈ 1 0.32 c 0.32 c 

Total number of cells 900 thousands 46 millions 1.5 millions 
a diameter of the rotor D = 4.5 [m].  
b chord length c = 0.113 [m] (at 82% span-wise position). 

 

  (a)          (b) 

Figure 1. Computational grid (a) wake region and (b) around Blade region. 



 

 

 

 

 

 

2.4.  Numerical analysis condition 

In MEXICO experiments, tripping tape is used to transient from laminar to turbulent on blades [9]. 

Therefore, attached flows are expected in high TSR conditions and uses of turbulence model is 

considerable. However, such RANS simulations have difficulty for prediction of separated aerofoil 

flows. When TSR decreases, attached flow on the blades becomes separated flow because of increase 

the angle of attack. According to Tanabe et al. [18], some turbulence models of RANS tend to predict 

attached flows till a higher angle of attack. Therefore, In high TSR condition, RANS simulation should 

fail to reproduce the actual phenomena. To simulate separated flows, Quasi Direct Numerical Simulation 

(QDNS) is effective [18]. The QDNS does not use any turbulence model and it is utilized for capturing 

vortices of wake region [19]. In this study, Unsteady RANS (URANS) simulation with the Spalart-

Allmaras (SA) turbulence model [20] and QDNS of the wind turbines were executed. The numerical 

analysis conditions are shown in table 3. A fourth-order compact MUSCL TVD [16] interpolation 

scheme was adopted as the reconstruction method. Thus, the resolution in space is fourth-order, enabling 

us to precisely capture even small vortices. The operational conditions are summarized in table 4.  Please 

note that the inflow is uniform and steady.  

 

Table 3. Numerical analysis condition. 

Governing equations 
Unsteady Reynolds-averaged Navier-Stokes equation / Navier-

Stokes equation  

Space discretization Cell-vertex FVM (Background)/Cell-centered FVM (Blade Grid) 

Inviscid flux SLAU [17] 

Reconstruction 4th order Compact MUSCL TVD interpolation [16] 

Turbulence model Spalart-Allmaras [18] / without turbulence model (Quasi-DNS) 

Rotation of wind turbine Moving Overlapped Structured Grids 

Time integration 
4th order Runge-Kutta (Background) 

LU-SGS/LU-DUR implicit method (Blade Grid) 

 

Table 4. summary of computation in this study  

case Inflow speed [m/s] Tip speed ratio [-] Simulation model 

1 10 10 URANS (SA) 

2 15 6.67 URANS (SA) 

3 24 4.17 URANS (SA) 

4 24 4.17 QDNS 

 

3.  Comparison of macro characteristics 

First, results must be validated by comparing them with results of the first MEXICO project experiments. 

Hence, three cases were simulated with 𝜆 = 4.17, 6.67 and 10, which are the conditions of MEXICO. 

The axial velocity along the span wise position (r = 1.8) at an azimuth angle of 270° is shown in figure 

2. The results of New MEXICO [12], which was carried out to validate the previous MEXICO 

measurement, are plotted together with the MEXICO findings. Therefore, the specifications such as 

blade length are same as MEXICO experiment. As for 𝜆 = 6.67 , which is the design point of the 

MEXICO rotor, although the URANS result slightly over predicts the velocity deficit around the rotor 

position (x/D = 0), it shows good agreement with both MEXICO and New MEXICO in the wake region. 

The simulation for the case of 𝜆 = 10 also predicted the velocity deficit well even around the rotor 

position (x/D = 0). However, the URANS simulation of the case of 𝜆 = 4.17 tends to over predict the 

velocity deficit. As mentioned in subsection 2.4, this tendency can be caused by the attached flow 



 

 

 

 

 

 

predicted by SA model. As a result of attached flow, velocity deficit and force acting on the blade are 

overestimated. On the other hand, the results of QDNS shows good agreement with MEXICO results.  

Next, the axial force distributions along the blade are shown in figure 3. Axial force is directly related 

to velocity deficit. Spanwise positions and axial force distributions are normalised by the rotor radius 

and dynamic pressure of inflows respectively. The magnitude of axial force is proportional to rotational 

speed; thus, axial force is found to increase as the radial position moves towards the tip. In contrast, 

axial force is found to sharply decrease around the blade tip because of tip loss. Focusing on each TSRs, 

the URANS simulations of 𝜆 = 6.67  and 𝜆 = 10  show good agreement with the MEXICO results  

qualitatively. However, these simulations slightly overestimate MEXICO results. This tendency could 

be caused by fully turbulent assumption of URANS, while tripping tape was used for laminar-turbulent 

transition in MEXICO rotor [21]. Same as the axial velocity, the URANS simulations of 𝜆 = 4.17 is 

found to over predict the axial force and QDNS shows consistency between MEXICO results.  

From these two points of view (velocity deficit, axial force), it was determined that, in this study, the 

URANS and QDNS simulations successfully captured the basic characteristics of wind turbine wake. 

However, it should be necessary for the low-TSR case to adjust the numerical conditions. 

 

 𝑢 = 10 m/s, 𝜆 = 10 𝑢 = 15 m/s, 𝜆 = 6.67 𝑢 = 24 m/s, 𝜆 = 4.17 

Figure 2. Axial traverse of axial velocity[9,12] 

 

 𝑢 = 10 m/s, 𝜆 = 10 𝑢 = 15 m/s, 𝜆 = 6.67 𝑢 = 24 m/s, 𝜆 = 4.17 

Figure 3. Radial distribution of axial force along with blade [9,12] 

4.  Analysis of wake structure 

4.1.  Wake expansion and vortex breakdown 

Further, analysis of vortex was executed to focus on the relationship between the vortices dynamics and 

TSR. As for 𝜆 = 4.17, please note that the result of QDNS simulation is used for analysis from this 

section because QDNS shows better agreement with MEXICO. The positions of the vortex core are 

shown in figure 4. The results of rFlow3D found to reproduce the MEXICO experiments with precision. 

When TSR increases, the radial expansion of tip vortices becomes greater. This behaviour is supposedly 

caused by changing the ratio of centrifugal force to wake velocity. Moreover, the radial expansion of 

wake should involve the vortex instability. The iso-surface of vorticity and the vorticity contour are 

shown in figures 6 and 7, respectively. Vorticity is normalised by the chord length in table 1 and the 

axial velocity of the main stream in each case. In general, the tip vortices are stable and minute structures 

do not exist at the initial stage of the wake. Subsequently, the vortices begin to interact with one another 



 

 

 

 

 

 

and short wavelength instabilities appear. Finally, the helical structures completely break down. 

Similarly, root vortices are combined with each other and resultantly diffuse into the entire wake region. 

Following this phenomenon, tip and root vortices merge and ultimately shape the complex structure. 

Such actions correspond to mixing behaviours with the main stream. 

The space between each vortex decreases as TSR increases. Consequently, the interaction of the 

vortices as a whole ultimately increases. For the case of 𝜆 = 4.17, the wake disturbance begins at the 

rotor position (x = 0) and the vortex core is maintained at x ≅ 2D. In this case, mid-span vortex is found 

as well as tip and root vortices. Mid-span vortex should be caused by separation flow. For 𝜆 = 6.67, 

however, the disturbance begins at x ≅ 1D and the vortices start to combine with each other. Around x 

≅ 3D, the vortices become minute structure and vorticities become weak. and for 𝜆 = 10, the vortex 

combination begins at about x ≅ 0.25D, with the helical structure ultimately broken at x ≅ 1D. 

Subsequently, wake diffusion occurs and is greatly diffused prior to x = 2D. Each of these cases depicts 

a ‘similar’ process with regard to the vortex breakdown phenomena. In terms of attached flow conditions, 

However, the vortex breakdown is accelerated by an increasing TSR.  

 

Figure 4. Positions of tip vortex core.[9] 

 

  

Figure 5. Iso-surface of normalized vorticity = 

0.5 (top: 𝜆 = 4.17, middle: 𝜆 = 6.67, bottom: 

𝜆 = 10). 

Figure 6. Vorticity contour of wake region(top: 

𝜆 = 4.17, middle: 𝜆 = 6.67, bottom: 𝜆 = 10). 



 

 

 

 

 

 

4.2.  Velocity distribution 

4.2.1.  Frame of reference.  

Next, analysis about velocity fields of wake region is investigated. Besides axial velocities, the radial 

flows and rotational flows behind the rotor plane should be investigated because they are supposed to 

represent the dynamics of rotational blade. Radial flows must correspond to radial expansion of the tip 

vortices shown in figure 4. And rotational flows of wake can be generated by the reaction force of blades. 

To visualize them, the Cartesian velocities (v, w) was converted into cylindrical velocities, as shown in 

figure 7; subsequently, the radial velocity 𝑉𝑟 (1) and azimuthal velocity 𝑉𝜓 (2) are derived. 𝑉𝑟 and 𝑉𝜓 

can represent radial expansion and rotational flow of wake region respectively.  

𝑉𝑟 = 𝑣 sin 𝜓 + 𝑤 cos 𝜓 (1) 

𝑉𝜓 = 𝑣 cos 𝜓 − 𝑤 sin 𝜓 (2) 

 

Figure 7. Rotating reference frame 

4.2.2.  Wake recovery process.  

Characteristics of wake flow can be visualised by using a rotational reference frame. At First, the axial 

velocity contours of wake region are shown in figure 8. It is seen that when TSR increases, the velocity 

deficit also becomes quite significant. This phenomenon is caused by an increase in thrust. Associated 

cross-sectional contours of axial velocity (at x = 0.25D, 1D and 2D) are shown in figure 9. In the case 

of 𝜆 = 4.17, the region of velocity deficit is not expanded toward the radial direction, with associated 

distributions remaining essentially constant through each position. In contrast, for the cases of 𝜆 = 6.67 

and 𝜆 = 10, the region of velocity deficit is notably expanded, with the axial velocity consequently 

decreasing in a manner similar to a tube-flow scenario. Furthermore, main stream mixing occurs by an 

exchange of momentum with radial and azimuthal velocities.  

The distribution of 𝑉𝑟 is shown in figure 10. The left column illustrates the plane at x = 0.25D as an 

example of the ‘stable region’ for the tip vortices in the case of 𝜆 = 6.67 and 10. These cases display a 

red circular area (i.e. a relatively strong radial flow toward the radial direction). Because of these radial 

velocities, wake expansion occurs.  Micallef et al. [13] also pointed out that strong radial velocities exist 

near and around tip regions. Note that the strong red and blue regions represent cross sections of the tip 

vortices. In the case of 𝜆 = 4.17, the plane at x = 0.25D which can be affected by dynamic separation 

flow shows relatively weak radial flow. The planes at x = 2D represent the regions of vortex breakdown 

for each TSR. Because of the occurrence of tip vortex breakdown, small vortices are generated and 

diffused into the whole wake region, leading to the disappearance of radial flow. Alternatively, a wake 

expansion may cease, and in such a case, the tip vortex becomes unstable. As mentioned in the previous 

section, when TSR increases, the tip vortex breakdown process starts at an early stage; however, it 

should be noted that 𝑉𝑟 correspondingly strengthens during the same period of time. Hence, the existence 

of 𝑉𝑟 can act as a barrier that impedes recovery of the wake velocity because the existence of radial flow 

should prevent a wake from taking a main stream. 



 

 

 

 

 

 

The azimuthal velocity (𝑉𝜓), which stands for rotational movement of wake region is shown below 

in figure 11. As for 𝜆 = 4.17, which is the separated condition, the rotational flow is relatively weak 

and disappear quickly because of dynamic mixing by mid-span vortex, with the same tendency 

presenting itself for 𝑉𝑟. In terms of attached flow conditions, rotational flow is maintained until x = 1~2D 

which is much longer than the case of 𝜆 = 4.17. In comparison between  𝜆 = 6.67 and 𝜆 = 10, the case 

of 𝜆 = 10 displayed a rapid vortex breakdown and azimuthal velocity 𝑉𝜓 disappears more rapidly. At x 

= 2D, the area depicting strong rotational flow essentially disappears. This indicates that tip vortex 

breakdown also corresponds to disappearance of azimuthal velocity. When comparing the position of 

disappearance for 𝑉𝑟  and 𝑉𝜓 , 𝑉𝑟  tends to disappear earlier than 𝑉𝜓 . If it is assumed that their 

disappearance has a direct correlation to mixing with the main stream, this tendency can be deemed 

conclusively valid because 𝑉𝑟 distributes to the outside area, whereas 𝑉𝜓 distributes inside of the wake. 

Therefore, 𝑉𝑟 distributions that are close to the main stream tend to disappear more rapidly. 

 

  

Figure 8. Axial velocity contour of wake 

region. 

Figure 9. Axial velocity contours of wake (top: 

𝜆 = 4.17, middle: 𝜆 = 6.67, bottom: 𝜆 = 10). 

  

Figure 10. 𝑉𝑟 contours of wake (top: 𝜆 =
4.17, middle: 𝜆 = 6.67, bottom: 𝜆 = 10). 

Figure 11. 𝑉𝜓 contours of wake (top: 𝜆 =

4.17, middle: 𝜆 = 6.67, bottom: 𝜆 = 10). 
 



 

 

 

 

 

 

5.  Conclusion 

URANS simulations and QDNS of the MEXICO rotor were executed by using rFlow3D and validations 

of the near-wake characteristics and axial force were implemented by comparing the results of the 

MEXICO projects. Furthermore, the effect of TSR on wake was investigated by focussing on the 

vorticity and velocities. From these results, the conclusions are following:   

・The basic characteristics such as velocity distribution and axial force obtained by rFlow3D are 

generally consistent with the results of the MEXICO experiments.  

・In low TSR, numerical conditions such as turbulence model need to be adjusted to predict the wake 

characteristics quantitatively. 

・When TSR increases, the space between each vortex decreases. Therefore, the interaction between 

vortices increases and the tip vortex breakdown occurs more rapidly. 

・During the beginning of vortex instabilities, wake expansion ceases because the radial flow produced 

by centrifugal forces disappears as a result of the breakdown of the tip vortices. 

・Rapid breakdown of the tip vortices does not always correspond to rapid mixing of the wake with the 

main stream because this condition is often accompanied with a strong radial flow, which can be a 

barrier to wake mixing. 

・Rotational flows by 𝑉𝜓 tend to remain within the wake region longer than radial flows because the 

former primarily distribute inside of the wake, whereas radial flows typically exist in the outer area 

(proximal to the main stream). 

6.  Future works 

To attain practical data, analytical conditions should approach actual field conditions. In particular, 

turbulence intensity is vital for accurately reproducing the actual phenomena; however, such simulations 

are normally difficult to duplicate and validate. Hence, via future studies, attempts will be set forth to 

conduct similar evaluations by comparing the attained results with light detection and ranging 

measurements.  
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