

Investigation of the validity of BEM for simulation of complex load cases

Dr. Bernhard Stoevesandt

Contents

- Part 1: Motivation
- Part 2: Numerical Setup
- Part 3: Yawed flow
- Part 4: Tower shadow
- Part 5: Standstill
- Part 6: Vision

Motivation

- → BEM still workhorse of the industry
- → BEM needs correction models
 - -< Dynamic stall
 - → 3D effects
 - ✓ Yaw correction
 - -< Rotor tower interaction
- \prec Larger turbines \rightarrow accuracy of simplified design models?
 - -< Comparison to CFD and experiments

Methods of validation

- \prec Comparison to CFD and experiments
- Yawed flow
 - → NREL VI experimental turbine
 - -< 20m Smart Blade turbine
 - -< INNWIND turbine
- -< Rotor Tower interaction
 - → NREL VI experimental turbine
- -< Standstill
 - -< NREL 5MW

Yawed flow models

 \prec 5 years measurements in the ECN Test Site show:

- \prec average yaw misalignment varies between 2 and 10 degrees
- Power decrease
- \prec Azimuthal variation of the loads \rightarrow fatigue blade loads

Yawed flow models-Video

Yawed flow models

- Large deviation in load prediction

-< Clear effect on the results due to improved capture of the skewed wake effect

Methods	Power output	Thrust force
CFD	494 kW	89 kN
BEM - Schepers	525 kW <mark>(+6%)</mark>	95 kN <mark>(+6%)</mark>
BEM - P&P	576 kW <mark>(+16%)</mark>	99 kN <mark>(+11%)</mark>
BEM - GDW	680 kW (+37%)	107 kN (+ <mark>20%)</mark>

Smart Balde: Development and Design of Intelligent Rotor Blades

Yawed flow models

Large deviation in axial induction factor prediction
CFD can improve the engineering models

Rotor tower interaction models -Video

- \prec Mesh is created by BladeBlockMesher tool of ForWind-IWES
- \prec ca. 10 Million cells
- \prec ca. 29.000 cells on blade surface
- \prec Rotor meshed in separate cylinder

-< Accurate CFD simulations

-< Deviation between FAST and CFD is presented

-< Accurate CFD simulations

-< Deviation between FAST and CFD is presented

-< Accurate CFD simulations

Deviation between FAST and CFD is presented

Fluid-structure coupling

High fidelity for complex flow situations

- -< Simulations of large, flexible rotor blades complex
- -< Accurate predictions require multiphysics solution
- -Fluid-structure coupling necessary
- \prec Coupling of OpenFOAM and inhouse beam solver
- ✓ Based on Geometrically Exact Beam Theory (GEBT)
- \prec Large deformations and cross sectional couplings supported
- -< Geometrically resolved, fully coupled simulations possible
- ✓ Runtime post-processing fully integrated

Wind turbines at standstill

High fidelity for complex flow situations

- Standstill case required by IEC 61400-1
- High angles of attack + strong interaction between fluid and structure
- ✓ Numerical complex simulation
- ✓ Validity of low fidelity models?

- ✓ Simulations performed on NREL 5MW
 - -< FAST
 - ✓ Fluid-structure coupled 3D CFD (DDES)
 - \prec 45 m/s, Inflow angle 90°
 - -< 24 million cells, fully structured

Fluid-structure coupling High fidelity for complex flow situations

- -< Mean deflections show reasonable agreement
- Significant differences in edgewise blade dynamics
- -< Edgewise vibrations not predicted by FAST
- Vortex shedding not captured in BEM
- -< Standstill simulations with BEM should be treated with care

Time [s]

Conclusion and Outlook

-An investigation of BEM in complex flow situations was presented

- Three complex scenarios were analyzed
 - ✓ Yawed inflow
 - ✓ Tower shadow
 - -< Standstill
- \prec A comparison with CFD simulations and experiments showed:
 - \prec The yaw correction models show clear deviations
 - ✓ Tower model is not accurate
 - \prec Results from BEM for standstill should be treated with care

Thank You For Your Attention Any questions?

Bernhard.stoevesandt@iwes.fraunhofer.de

