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Abstract. An accurate prediction of wind power output is crucial for efficient coordination of cooperative
energy production from different sources. Long-time ahead prediction (from 6 to 24 hours) of wind power
for onshore parks can be achieved by using a coupled model that would bridge the mesoscale weather
prediction data and computational fluid dynamics. When a forecast for shorter time horizon (less than one
hour  ahead)  is  anticipated,  an  accuracy  of  a  predictive  model  that  utilizes  hourly  weather  data  is
decreasing. That is because the higher frequency fluctuations of the wind speed are lost when data is
averaged over an hour. Since the wind speed can vary up to 50% in magnitude over a period of 5 minutes,
the higher frequency variations of wind speed and direction have to be taken into account for an accurate
short-term ahead  energy  production  forecast.  In  this  work  a  new  model  for  wind  power  production
forecast 5- to 30-minutes ahead is presented. The model is based on machine learning techniques and
categorization approach and using the historical park production time series and hourly numerical weather
forecast.

1. Introduction
Currently, the wind energy plays a significant role in total electricity production in Europe. Therefore it is vital to
predict the wind energy output timely and accurate. The variability of the wind is the primary challenge for
obtaining an accurate forecast minutes to hours ahead.
Many studies have been devoted to the improvements of wind forecasting techniques with a number of models
developed and launched. These models are based on physical [1,2], statistical [3,4] or hybrid approaches [5,6].
The physical approach focuses on integrating well-known physical aspects into the model, such as information
about surrounding terrain and properties of the wind turbines. Statistical approaches relies more on historical
observations  and  their  statistical  relation  to  meteorological  predictions  as  well  as  measurements  from
Supervisory Control  And Data Acquisition (SCADA). Statistical  models are usually built  around Numerical
Weather Prediction (NWP) at tens-of-kilometers resolution. 
But NWP-based models are failing to provide site-specific short time ahead forecasts at satisfactory accuracy
due to a relatively coarse resolution of the NWP model.
For site-specific forecasts, the mesoscale-microscale coupling model was proposed in [7], where the artificial
intelligence methods were used to issue 1 to 3 hours ahead wind speed forecast from NWP data, and later the
CFD module was used to calculate the flow at finer scales [8]. The accuracy of the coupled model [7] was found
to be superior  comparing to  that  based on polynomial  fittings  as  well  as  AutoRegressive  Moving Average
(ARMA) models, although the accuracy for shorter-than-one-hour forecast remains unsatisfactory.
Very short-term models  (less  than  9  hours)  used  for  wind  power  forecasting  usually  consists  of  statistical
methods like Kalman Filters, ARMA, Auto-Regressive with Exogenous Input, Box-Jenkins etc. Inputs to these
models are historical observations of wind speed, wind directions, temperature, etc.
Machine learning methods used in this area include Neural Networks [9], Support Vector Machines [10], Nearest
Neighbour Search [11], Random Forests, etc. Summarizing the reports for very-short time ahead forecast the
error of 12% of the total rated power can be stated as the state-of-the-art. [12,16]



2. Model selection
In this work, the model proposed in [7] has been adapted to forecast a wind power output for less than one hour
ahead by utilizing time series of historical power production in addition to NWP data. Adapted model also uses a
data categorization approach, as described in [13]. There the information obtained from the categorization of a
single variable (wind speed, for instance) is supplied as an additional input to the model.
The model for short-time ahead prediction of the wind power is based on time series analysis of the historical
park production and NWP data. The quality of the forecast depends on the ability of the model to predict the
wind flow near  the  ground in the  complex  terrain,  where  the  roughness  and complexity affect  the  flow at
microscale. Therefore the model employs machine learning techniques as those are proven to be efficient for
nonlinear multivariable functions approximation when explicit physical-based models have a limited application
or not available.
In this work, a combination of artificial neural networks (ANN) module and kernel module (support vector
machine, SVM) has been used to forecast the total wind park power production 5- to 30-minutes ahead. The
modules are trained, tested and validated on 4-months historical data from several onshore wind parks from
Sweden and Norway.
To forecast the wind power production 5- to 30-minutes ahead a feed-forward (FF) ANN with a single hidden
layer and single output neuron has been built.
Two different sets of the input variables were used for ANN training. One ANN received the historical power
production values as inputs and obtained the total power production minutes ahead as output. Another ANN
received time-series of multiple environmental variables as inputs (registered wind speed and direction time-
series and hourly NWP data) in addition to historical power production time-series.
The length of a time window was two times longer than the prediction horizon. For example, for 5-minutes
ahead prediction, the last 10-minutes park power production records (averaged over 1 minute) were used as
inputs.
The pre-processing included data cleaning, normalization, and time averaging. The data was averaged by 1-
minute for 5- to 10-minutes ahead prediction, and 5-minutes averages were used for 15- to 30-minutes ahead
prediction. The dataset  split  in the ratio 70:20:10 for training,  testing, and validation correspondingly.  After
cleaning,  the  total  number  of  records  available  for  the  model  training  was  129600 for  1-minute  averaging
intervals and 25920 for 5-minutes averaging intervals.
To measure the differences between values predicted by the model and the values observed the normalized root-
mean-square error (root-mean-square percentage error, RMSPE) had been calculated:
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where y denotes the observed value and ypredict denotes the corresponding prediction. 
As in RMSPE the negative and positive errors don't cancel out each other and the higher weight is given to larger
errors it makes an excellent general purpose error metric for numerical predictions: the smaller the RMSPE, the
better fit of the model. RMSPE for ANN models for validation data sets is shown in Table 1.
Backpropagation training method as provided by Encog Workbench open source software package [15] has been
used.

Table 1. Root-mean-square percentage error of wind power production forecast performed by ANN-
module.

Prediction time-window Hourly  weather  forecast  and
historical power production time
series

Historical  power  production
time series

5 minutes ahead prediction 12.2 8.2

15 minutes ahead prediction 14.9 9.7

30 minutes ahead prediction 15.1 9.5



Because of the lower prediction error, the ANN trained only on historical power production time series has been
selected for further modification.
From a theoretical  point  of  view, one can approximate almost  any function with one layer  neural  network.
Therefore, the most of the literature suggests that a single layer neural network with a sufficient number of
hidden neurons will provide a good approximation for most problems and that adding a second or third layer
yields little benefit. Here a new double-module model has been suggested to improve the model's accuracy. One
single hidden layer FF ANN has been used to issue a "coarse" prediction and the output from the first module
has  been  submitted  to  the  second machine  learning  unit  (a  "correcting"  module)  to  issue  a  more  accurate
forecast. With the suggested double-module approach when the output of the coarse predictor has been used as
additional input to the fine predictor, RMSPE has been lowered to 7.9 and 8.9 for 5 minutes ahead and 30
minutes ahead predictions respectively.
The accuracy of the "correcting" module based on single hidden layer FF ANN is compared to the one based on
kernel method (SVM). RMSPE for different "correcting" module architectures is provided in Table 2.

Table  2. Root-mean-square  percentage  error  of  wind  power  production  forecast  performed  by
"correcting" module.

Prediction time-window ANN module SVM module

5 minutes ahead prediction 7.9 6.4

30 minutes ahead prediction 8.9 7.9

The performance of double-module model has been compared to data categorization approach based model. This
method  is  described  in  [13]  and  suggests  that  the  entire  dataset  should  be  grouped  into  several  discrete
categories. Here, the wind speed data has been split into nine categories according to the turbine power curve
characteristics  (with categories'  names  similar  to  Beaufort  scale)  as  shown in  Table  3.  Obtained numerical
attribute of the category has been fed as an additional input to “coarse” module FF ANN.

Table 3. Wind speed ranges and corresponding numerical attributes used for categorization.

Wind speed
range, m/s

<0.5 0.5-1 1-3 3-7 7-10 10-15 15-20 20-25 >25

Category Failed
record

Wind
calm

Light
breeze

Gentle
breeze

Fresh
breeze

Strong
wind

Near
gale

Gale Cut off

Numerical
attribute

1 2 3 4 5 6 7 8 9

Previously it was shown [14] that the selection of methods for categorization is not critical, so in this work, the
wind speed was categorized. RMSPE on validation data set for all the models mentioned above summarized in
Table 4.

Table 4. Root-mean-square percentage error of 30 minutes ahead power output forecast for different
model architectures.

Single-module,  ANN
model

Double-module,  ANN
based model

Double-module,
ANN  and  SVM  based
model

Double-module  model
with data categorization
approach

14.9 8.9 7.9 7.5

3. Results
The suggested  double-module  model  comprise  of  (1)  ANN that  uses  park power  production  time-series  to



predict power output 5- to 30-minutes ahead, and (2) SVM that utilizes output from ANN as one of the inputs
along with NWP data and the wind power production time-series. Schematic description of the model shown in
Figure 1.

Figure 1. Double-module model: "coarse"-predicting module is using longer time-series of a single variable; the
output  from "coarse"  module  is  utilized  by "correcting"  module  along with  shorter  time-series  of  multiple
variables.

ANN architecture and performance for various length of time-windows and prediction horizons is summarized
in Table 5.

Table 5. ANN modules' architectures and root-mean-square percentage error of wind power production forecast
performed by corresponding modules.

Prediction horizon 5 minutes 10 minutes 20 minutes 30 minutes

Time-series  window
interval, minutes

10 20 30 20 30 40 30 40 60 40 60 90

Number  of  hidden
neurons

10  to
30

20  to
60

30  to
90

20  to
60

30  to
90

40  to
100

30  to
90

40  to
100

60  to
100

40  to
100

60  to
100

90  to
100

Validation  error
(RMSPE)

14.9 9.7 7.9 15.1 12.2 8.1 18.1 12.4 8.6 16.2 8.9 8.9

The output from the ANN module along with other inputs has been submitted to SVM to predict the power
output same time ahead. With the double-module approach, RMSPE for 10 minutes ahead forecast has been
lowered from 7.9 to 5.9. The SVM module performance is shown in Table 6.

Table 6. SVM modules' architectures and root-mean-square percentage error of wind power production forecast
performed by corresponding modules.

Prediction horizon 5 minutes 10 minutes 30 minutes

Power  production 5 5 10 10 5 5 10 10 5 5 10 10 20 20



time-series  length,
minutes

NWP data used Yes No Yes No Yes No Yes No Yes No Yes No Yes No

Wind  speed  and
direction  time-
series, minutes

5 5 5 5 5 5 5 5 10 10 10 10 10 10

Validation  error
(RMSPE)

6.6 6.7 5.9 5.9 6.9 6.8 6.1 6.2 9.1 9.4 8.6 9.2 8.2 8.5

SVM module performance is  not significantly affected by the lack of NWP data for very short term ahead
prediction, yet for longer prediction horizons, like 30-minutes ahead, using NWP data as input helps to lower
RMSPE.
Finally, the model has been modified to employ the categorization data (as described in [4]). The wind speed
data  were  categorized  and  supplied  as  one  of  input  variables  to  SVM  module.  The  model  that  is  using
categorization approach shows better performance, as shown in Table 7.

Table  7. SVM  module  performances  for  the  short  time  ahead  wind  power  forecast  with  and  without
categorization approach.

Prediction horizon 5 minutes 10 minutes 30 minutes

Power  production  time-series
length, minutes

5 10 5 10 5 10 20

Wind  speed  and  direction  time-
series, minutes

5 5 5 5 10 10 10

RMSPE  for  model  without
categorization approach 

6.7 5.9 6.8 6.1 9.1 8.6 8.2

RMSPE  for  model  with
categorization approach

4.5 4.6 5.1 5.1 6.5 6.2 6.2

4. Conclusions
In this work a new model to forecast the wind power production 5- to 30-minutes ahead is presented.
The  model  uses  NWP,  historical  wind power  production  data  and employs  machine  learning  methods  and
categorization approach. The best performance is observed for the combination of ANN and kernel methods. The
proposed  model  provides  10-minutes  ahead  prediction  with  RMSPE  4.5  and  30-minutes  ahead  prediction
RMSPE 6.2 which is much better than reported state of the art for less than one hour ahead prediction [12, 16].
It is shown that use of NWP data does not significantly improve the accuracy of very short time ahead forecast
(5-10 minutes ahead), yet it is valuable for 30-minutes ahead forecasts.
If categorization approach is used, better accuracy of the forecast can be achieved even with smaller number
input variables. It is observed that model's generalization arises from the model's ability to find similarity in the
training data that usually consists of continuous numeric data. Since numbers are rarely the same from one
example  to  the  next,  the  model  can  fail  in  selecting  the  margins  for  identical  properties.  In  this  case,  the
generalization can be improved by classification. As shown in [14] the choice of methods for categorization is
irrelevant to the generalization improvement. Therefore, the generalization approach can be adapted to various
input parameters.
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