

Uncertainty of wind power forecasts and optimizing the use of weather intelligence

29.09.2016

Dr. Tilman Koblitz Short-Term Forecasting & Optimization Vattenfall Energy Trading

1 Uncertainty of wind power forecasts | Dr. Tilman Koblitz | 29.09.2016

Wind Power Forecast

Dataset for current study (2013-2016):

2

- Production data from 3.2 GW in 3 countries (UK, NL & DE)
- SCADA data from 12 wind farms (415 turbines)

Uncertainty of wind power forecasts and optimizing the use of weather intelligence

- Wind power forecast & atmospheric stability
- Probabilistic wind power forecasts

Effect of atmospheric stability on a wind turbine

Effect of atmospheric stability on a wind farm

Effect of atmospheric stability on a wind farm

*Based on 21 months of data

Effect of atmospheric stability on a wind farm

Effect of atmospheric stability on a wind farm

Effect of atmospheric stability on a wind portfolio

Wind speed

 Day-ahead shear index forecast over time of day across different geographical locations and heights

Wind power

 Day-ahead forecast error vs. time of day for 1.1 GW of installed capacity in NL, UK & DE

Effect of atmospheric stability on a wind portfolio

Wind speed

 Day-ahead shear index forecast over time of day across different geographical locations and heights

Wind power

 Relative improvement of shear corrected dayahead model vs. uncorrected model

Bias corrected model	Wind power MAE	Wind power RMSE
Clashindarroch UK	-1.60 %	-1.80 %
Edinbane UK	-0.19 %	-0.62 %
Kentishflats UK	-3.48 %	-2.65 %
Kentishflats ext. UK	-3.49 %	-4.58 %
Ormonde UK	-0.33 %	-0.50 %
Parc Cynog UK	-1.91 %	-0.93 %
Pendine UK	-0.84 %	-1.06 %
Swinford UK	-1.65 %	-1.45 %
Thanet UK	-0.56 %	-0.70 %
Nordzeewind NL	-6.02 %	-11.08 %
Zuidlob NL	-1.11 %	-2.03 %
Dantysk DE	-0.71 %	-1.77 %
All	-2.01%	-3.34%

Effect of atmospheric stability on the UK power market

Stability index UK

- · Day-ahead atmospheric stability index UK
- Calculated from day-ahead forecasts across different geographical locations & heights

UK Power Market

Power price*1 vs. atmospheric stability index UK

 Intraday minus day-ahead (spot) price*1 vs. stability index UK

*1: based on 18 months of UK market data (01/2015-06/2016)

Uncertainty of wind power forecasts and optimizing the use of weather intelligence

- Wind power forecast & atmospheric stability
- Probabilistic wind power forecasts

Effect of probabilistic forecast on a Wind Turbine

VATTENFALL

13 Uncertainty of wind power forecasts | Dr. Tilman Koblitz | 29.09.2016

Effect of probabilistic forecast on a Wind Turbine / Wind Farm

Effect of probabilistic forecast on a Wind Portfolio

Wind power

- For assymetric distributions the median can differ significantly from the mean:
 - Median (P50) minimizes MAE
 - Mean minimizes RMSE

15 Uncertainty of wind power forecasts | Dr. Tilman Koblitz | 29.09.2016

 Relative KPI difference of mean vs. median day-ahead forecast model:

Mean vs. median model per park	Wind power MAE	Wind power RMSE
Clashindarroch UK	-0.21%	-1.85%
Edinbane UK	+1.26%	-2.51%
Kentishflats UK	+1.45%	-0.88%
Ormonde UK	+2.57%	-2.21%
Parc Cynog UK	+2.18%	-0.08%
Pendine UK	+1.29%	-1.02%
Swinford UK	+0.66%	-1.46%
Thanet UK	+2.66%	-1.22%
Nordzeewind NL	+3.06%	-1.04%
Zuidlob NL	+0.79%	-1.89%
Dantysk DE	+2.41%	-1.17%
All	+2.63%	-1.22%

Forecast

Error distribution

Probabilistic forecasts and the UK Power Market

*1: based on 18 months of UK market data (01/2015-06/2016)

Atmospheric stability:

- Day-ahead wind shear forecast can be used as proxy for atmospheric stability
- Effect of atmospheric stability is evident from wind turbine to energy market
- Implementation into forecast models improves accuracy

Probabilistic forecasts:

- · The choice of mean vs. median forecast determines which KPI is minimized
- Day-ahead weather risk can be linked to forecast error and hence market price volatility

Contact for questions:

Dr. Tilman Koblitz

tilman.koblitz@vattenfall.com

17 Uncertainty of wind power forecasts | Dr. Tilman Koblitz | 29.09.2016

Backup A

Effect of atmospheric stability on a wind portfolio

Backup B

Current wind power forecast process

