DNV·GL

ENERGY

Give It All You Got

Using big data machine learning ensembles for condition monitoring

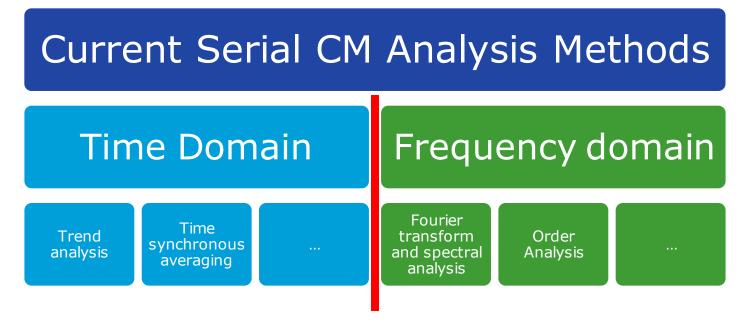
Elizabeth Traiger, Ph.D., M.Sc. 29 September 2016

- Motivating problem condition monitoring of gearbox issue detection in SCADA
- Developments around data
- Support vector machine failure model
- Gradient boosting machine failure model
- Summary of findings

The Problem

- Goal
 - Single model maximizing the use of high frequency (f ≥ 1 Hz) available SCADA signals real-time accurate condition monitoring (CM) to detect and classify gear box faults
- Challenges
 - Multiple mechanical causes of gearbox deterioration
 - Increasing number of component configurations
 - Increasing number of sensor configurations
 - More high frequency sensor signals available

The Problem

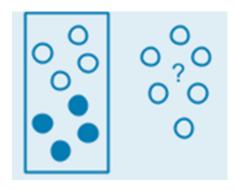


- Well established methodology and guidelines
- Capitalize on physical mechanism behind particular fault
- Multiple customized singular methods concurrently used
- Minimal use of hardware resources
- No dominate One-Size-Fits-All approach

4

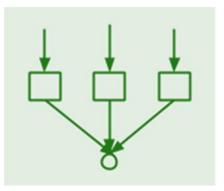
- Big data is now just "Dysfunctional Data"
- Hardware constraints no longer a limiting factor
 - Sophisticated ontologies for relational databases in cloud computing
 - Distributed computing environments for alternative storage and processing
- Statistical tools now available
 - Development of fast parallel processing algorithms
 - Ensemble models now computationally feasible within standard software
- Collected wealth of data required for machine learning algorithms
 - Sufficient duration high quality data sets exist for pattern recognition
 - Synthesis of methods
 - Classification as well as detection possible

Machine Learning Ensemble Approaches



- Supervised Machine Learning
 - Excellent at anomaly detection in high dimensional spaces
 - Established results within conditional monitoring literature: artificial neural networks, self organizing maps, k-means clustering,...

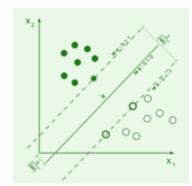
- Ensemble Methods
 - Combine multiple weak models to create strong predictor
 - Support Vector Machines
 - Gradient Boosting Machines



Support vector machine

- Support Vector Machine (SVM) is a non-probabilistic binary classifier which maps features into a separable space
 - Utilize a hyperplane with maximum margin to separate different classes of data
 - Can include non-linear features via kernel (RBF) trick
 - Hyperparameter tuning using grid search with k-fold cross validation
- Ensemble SVM method
 - Subsample the data run algorithm in parallel
 - Weight samples to compensate for unequal class sizes
 - Allow models vote on a prediction

 Consecutively build many binary classifiers learned to identify only one distinct class



Gradient boosting machine

- Gradient boosting machine (GBM) adaptively combines weak classifier models to form a strong classifier model minimizing pseudo-residuals
 - Decision trees are the base-learner models
 - Boosting sequentially adds new weak learners based on a loss function optimizing instances misclassified by previous learner
 - Intrinsic feature selection
- Rare inccident compensation
 - Additional weight vector for to the false positives error and false negatives added due to small incidents in singular classes
 - Weights are multiplied by the classification error at each iteration of the learning process

The Data

speed	acceleration	power	electrical	temperature
 generator RPM wind 	 rotor bearing generator bearing gear box 	 turbine production torque 	voltage phasecurrent phase	 nacelle bearing gear box slip ring generator ambient

- Three different gearbox fault types to classify = Four classes
- Minimum of Two-months clear operational data prior to fault for training set
- Four year total series
- Multiple instances of each fault
 - Includes simulated fault data of each type



Training / Test / Validation Partition

Feature Creation*

Iterative Model Creation

Predition Validations

Classification Rate						
	Fault Type					
	Bearing Crack	Broken Gear tooth	Gear pitting			
SVM	79%	76%	72%			
GBM	92%	88%	84%			

	Average Training Time (minutes)		Average Prediction Time (seconds)
SVM	14.22	SVM	7.45
GBM	38.19	GBM	5.63

- Key Findings
 - Ensemble machine learning algorithms are a viable tool for condition monitoring mechanical fault detection applications utilizing many sensors with high frequency data
 - This study indicates ensemble Gradient Boosting Machines can outperform Support Vector Machines in multi-class gearbox fault classification
- Caveat Emptor
 - Missing values need to be handled with consideration
 - Domain expertise required
 - Model will not identify novel fault pattern
 - Dynamic
 - Models improve with additional fault library training, but grow
 - Retrain with the addition of new sensor signals

References

- 1. Boser, Bernhard E., Isabelle M. Guyon, and Vladimir N. Vapnik. "A training algorithm for optimal margin classifiers." *Proceedings of the fifth annual workshop on Computational learning theory*. ACM, 1992.
- 2. Hastie, T., Tibshirani, R., and Friedman, J. H., *The Elements of Statistical Learning: Data Mining, Inference, and Prediction*, New York: Springer, 2011.
- 3. D. Coronado and K. Fischer, "Condition Monitoring of Wind Turbines: State of the Art, User Experience and Recommendations Project Report", *Fraunhofer IWES*, January 2015. <u>https://www.vgb.org/vgbmultimedia/383_Final+report-p-9786.pdf</u>
- 4. GL Renewables Certification, "Guideline for the Certification of Condition Monitoring Systems for Wind Turbines", *Hamburg, Germany*, 2013.
- M. Wilkinson, B. Darnell, T. van Delft and K. Harman, "Comparison of methods for wind turbine condition monitoring with SCADA data," *IET Renewable Power Generation*, vol. 8 np. 4, p.390-397, 2014.
- 6. Project Optique, <u>http://optique-project.eu</u>/.
- 7. Wang, Ke-Sheng, Vishal S. Sharma, and Zhen-You Zhang. "SCADA data based condition monitoring of wind turbines." *Advances in Manufacturing* 2.1 (2014): 61-69.

Thank you for your attention

Elizabeth Traiger, Ph.D, M.Sc

elizabeth.traiger@dnvgl.com

www.dnvgl.com

SAFER, SMARTER, GREENER