

University of Stuttgart Stuttgart Wind Energy (SWE) @ Institute of Aircraft Design

Recommendations for load validation of an offshore wind turbine with the use of statistical data – experience from alpha ventus

Ricardo Faerron Guzmán Po Wen Cheng

29.11.2016

WindSUMMIT201627-29 SEPTEMBEREUROPE27-29 SEPTEMBERHAMBURG27-29 SEPTEMBER



WINDFORS Windenergie Forschungscluster

#### **Project Partners**

**Work Packages** 



SWE Stuttgart Wind Energy @ Institute of Aircraft Design

ForWind Energy Research Aduen **SENVION** wind energy solutions

Institut für Aerodynamik und Gasdynamik

IAG

AN AREVA GAMESA COMPANY

# **OWEA Loads**

A. Load analysis and probabilistic load description

**B. Load-reducing control** and load monitoring

**C.** Design conditions for future wind turbines

Koordination

Gefördert auf Grund eines Beschlusses des Deutschen Bundestages



Bundesministerium für Wirtschaft und Energie



Projektträger



#### Introduction

#### **Measurement campaigns for offshore wind turbines**

• Once the design of the turbine has been certified a prototype can be built for testing.

IEC-61400 -13 Measurements of Mechanical Loads:

• "This standard is aimed at the test institute, the turbine manufacturer and the certifying body and clearly defines the minimum requirements for a mechanical loads test ..."

Why do we need this?

 "In the design stage, loads can be predicted with aero-elastic models and codes. However, such models have their shortcomings and uncertainties, and they always need to be validated by measurement. "



# The IEC 61400 – 13 Guideline

#### Open questions for offshore

#### Measurements

• How do we take into account the offshore environment? How do you include oceanographic measurements into the capture matrix? Should they even be included into the capture matrix?

#### Simulations

• How do we set up the simulation to represent the measurements taken? Do the measurement load cases (MLC) lead to a good comparison possibility with the design load cases (DLC)?

Validation

Is there a clear procedure for validation?



#### On the subject of validation

General recommendations from Söker et al.

- Consistency of environmental conditions
- Consistency of turbine dynamic behaviour (frequencies)
- <u>Consistency of turbine characteristic curves</u>
- Consistency of behaviour of loads and operational parameters (time series and statistics)
- Consistency of fatigue characteristic behaviour



# Methodology

Validation of computer models

#### **GENERAL IDEA**

• Use measurement data and compare it to simulation data on a statistical basis

#### BUT

- There are many **different offshore turbine** concepts (support structures, towers) so a general procedure is useful and necessary
- There are more environmental effects to take into account offshore, this leads to large scattering

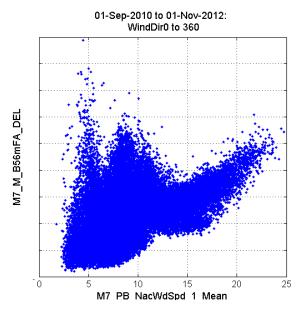



Figure: Fore-aft damage equivalent loads for case of power production



7

# Methodology

How to go about the comparison?

# Possible approaches

- Carry out the IEC 61400-3 design load case (DLC 1.1 and 1.2) simulations for power production and show that the simulations are conservative (fatigue and maximums)
- Use a design of experiments methodology with full factorial or Box-Behnken representation of the measured environmental statistics as input for simulations (Müller et al.<sup>1</sup>)
- Chose only specific range of measurement events within know boundaries and pick representative parameters as input for simulations

Screened Statistical Data Comparison Method



# Methodology

#### Screened Statistical Data Comparison Method

Screening of the data:

- 1. List all meteorological and oceanographic parameters needed for the validation, along with other parameters such as marine growth thickness and density.
- 2. Define which parameters need to be **binned**.

E.g. wind speed.

3. Define which parameters will be **constrained**.

E.g. only data from 5-7% turbulence intensity

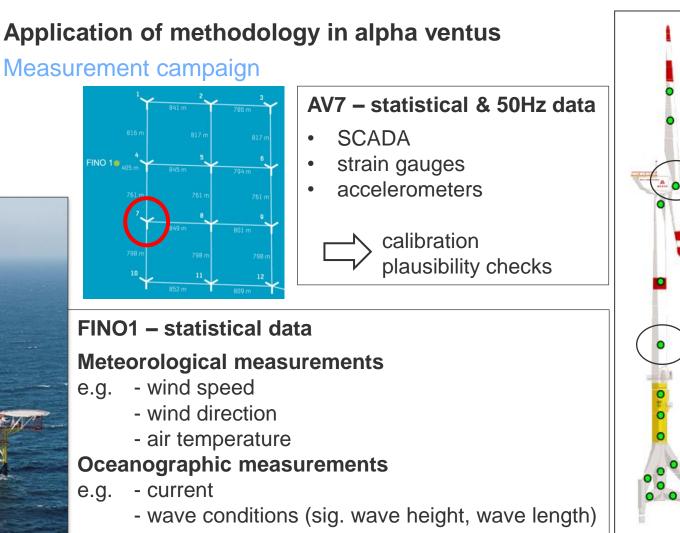
4. Define which parameters are, for the purpose of the validation, constants.

E.g. marine growth thickness or mean sea level



# Methodology

#### Screened Statistical Data Comparison Method


Simulation parameters need to be set based on the screened data.

- 1. Determine a mean value representative of the bin or constraint
- 2. In the case that a bin or constraint is large, divide the constrained parameter into different mean values.

E.g. wind wave misalignment is filtered from +60 to -60 degrees, the simulated misalignment can be +45, 0 and -45 degrees.

3. Determine the **number of seeds** that are appropriate for each simulation





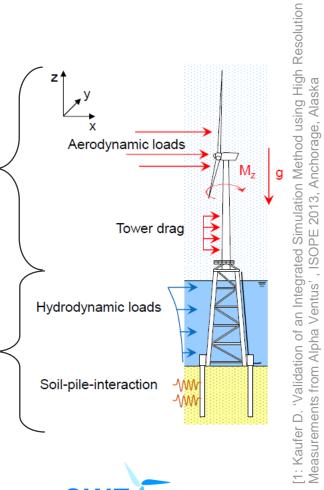
SWE

http://www.dewi.de/dewi\_res/fileadmin/pdf/publications/Publikations/1.3\_Kuehnel.pdf http://rave.iwes.fraunhofer.de/raveResources/projects/images/Abbildung1\_tuffo.png www.fino3.de/images/stories/alpha-ventus.jpg Figure2: | Figure3: | Figure1: 10

# Modeling of the turbine

## SWE-Flex5 coupled with Poseidon

SWE - Flex5

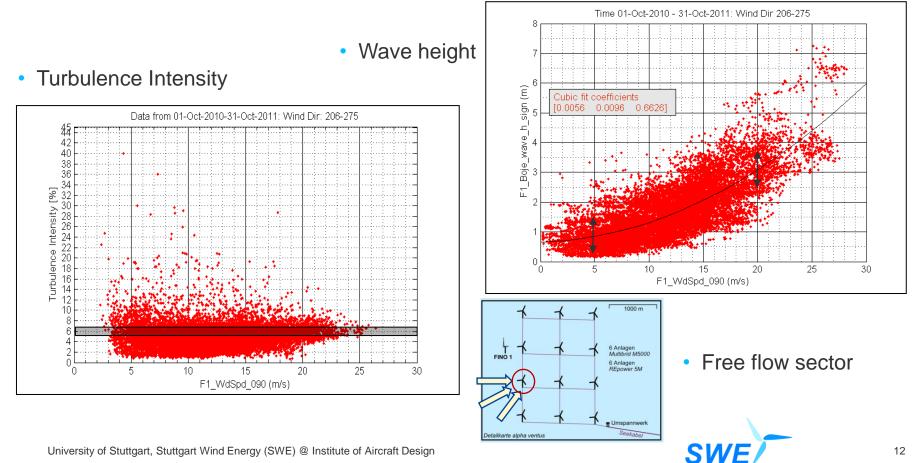

 dynamic simulation of onshore wind turbines with max. 28 degrees of freedom

Poseidon (University of Hannover)

 linear finite element code specially designed for wave loaded space frame structures

Flex5 + Poseidon

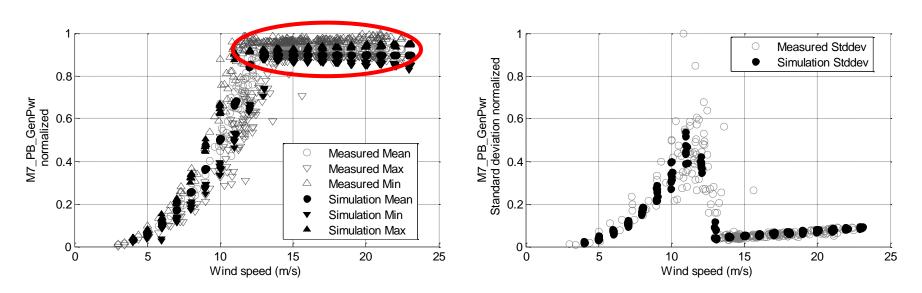
- Integrated approach
- Coupled turbine, substructure and Poseidon foundation model
- Validation model of AV04 jacket mounted turbine by Kaufer<sup>1</sup>




11

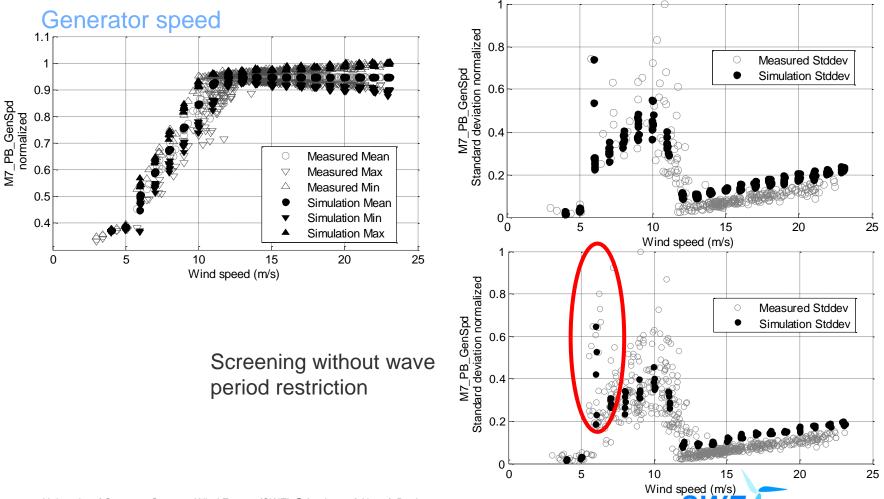
Flex 5

### **Screened Statistical Data Comparison Method**

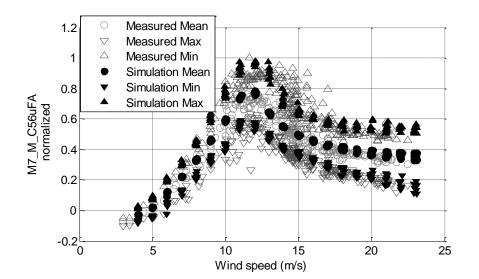

1st step: examples of screening of measured data



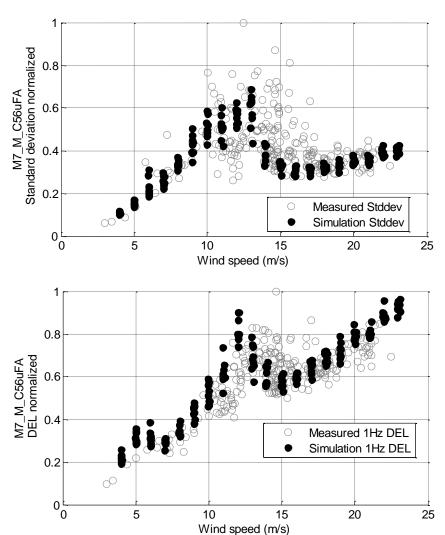
## **Example from alpha ventus**


|                 | Parameters               | Constraint or Binning                 | Values for data screening                                                                                                                                                                            | Value for simulations                                                                            | Seeds                           |
|-----------------|--------------------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------|
| Wind condition  | Wind direction           | Free stream                           | 207-275 degrees                                                                                                                                                                                      | 270 degrees                                                                                      | -                               |
|                 | Mean hub wind speed      | 1m/s bins                             | 3.5-23.5m/s                                                                                                                                                                                          | 4-23m/s                                                                                          | -                               |
|                 | Turbulence intensity     | Constrained                           | 5.5%-6.5%                                                                                                                                                                                            | 6%                                                                                               | 9 turbulent<br>seeds / wind bin |
|                 | Wind shear               | Not binned or constrained             | none                                                                                                                                                                                                 | 0.14 power law exponent                                                                          | -                               |
| Wave conditions | Significant wave height  | Constrained as function of wind speed | Bin is defined as a function of the<br>fitting curve of significant wave height<br>vs wind speed. The bin will be +/- 0.5<br>m of the fitted significant wave height<br>value for a given wind speed | For each wind speed<br>bin, a significant wave<br>height value is given<br>by the best fit curve | -                               |
|                 | Peak spectral period     | Constrained                           | 6-8 seconds                                                                                                                                                                                          | 7 seconds                                                                                        | -                               |
| Wind and wave   | Misalignment             | Constrained                           | -30 to +30 degrees                                                                                                                                                                                   | -30,0, +30 degrees                                                                               | 3                               |
| Sea currents    | Current velocity         | Not binned or constrained             | None                                                                                                                                                                                                 | 0 m/s                                                                                            | -                               |
|                 | Direction                | Not binned or constrained             | None                                                                                                                                                                                                 | -                                                                                                | -                               |
| Water level     | Mean sea level           | Not binned or constrained             | None                                                                                                                                                                                                 | 27m design basis                                                                                 | -                               |
| Air Properties  | Density                  | Not binned or constrained             | None                                                                                                                                                                                                 | 1.225 kg/m^3                                                                                     | -                               |
| Marine growth   | Thickness                | Not binned or constrained             | None                                                                                                                                                                                                 | 0.05 m                                                                                           | -                               |
|                 | Density                  | Not binned or constrained             | None                                                                                                                                                                                                 | 1325 kg/m^3                                                                                      | -                               |
| Wind/Yaw        | Misalignment             | Not binned or constrained             | None                                                                                                                                                                                                 | -5,0,+5 degrees                                                                                  | 3                               |
| Soil parameters | Scour                    | Not binned or constrained             | Not available                                                                                                                                                                                        | None                                                                                             | -                               |
| -               | Stiffness and<br>Damping | Not binned or constrained             | Not available                                                                                                                                                                                        | Provided by manufacturer                                                                         | -                               |

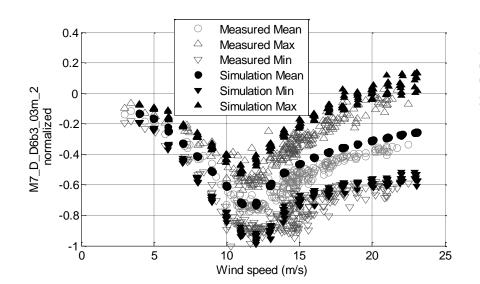
**Power production** 

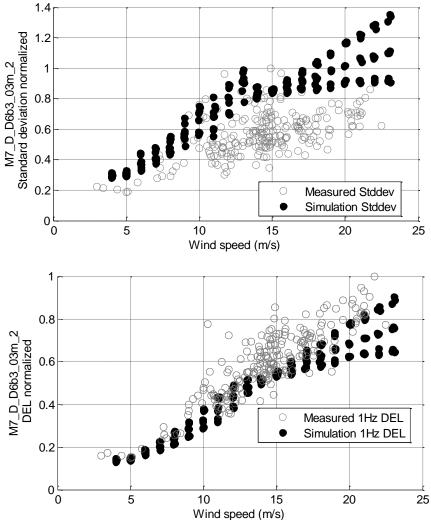



Losses dependant on location of measurement point







#### Fore-aft tower base bending moment




Good agreement of comparison



#### Blade flapwise bending moments





Model dependant limitations of the standard deviation and DEL

#### Conclusions

- The simple methodology shows to be useful for the validation of statistical data
  - The designer or validation engineer can therefore better understand the capabilities of the simulations

Limits appearance of outliers and scattering when comparing data

• We need computer models we can trust but models themselves will always have limitation



Careful interpretation of results necessary



#### Outlook

- Importance of wake: this also needs to be analysed as fatigue loading can be driven by this situation
  - but difficulty determining inflow wind speeds and turbulence intensities
- Effects of other parameters: by using the same Screened Statistical Data Comparison Method but changing the screening parameters, other effects can be investigated,
  - E.g. high turbulence intensities, hydrodynamic loads





## Thank you for your attention

**Ricardo Faerron Guzmán** 

e-mail faerron@ifb.uni-stuttgart.de phone +49 (0) 711 685-68258 fax +49 (0) 711 685-68243

University of Stuttgart

Gefördert auf Grund eines Beschlusses des Deutschen Bundestages



Federal Ministry of Economics and Technology Projektträger





Koordination

