

Context...

Forests generate high level turbulence and strong wind shear

 \Rightarrow CFD approach may be an alternative to wind resource assessment

 \Rightarrow Accuracy has still to be improved in such complex situation

Question : What's the best RANS approach to assess the wind around canopy ? Katul et al. (2003), Boundary Layer Meteorology

"No clear advantage to including a turbulent kinetic dissipation rate budget when mixing length can be specified instead"

- \Rightarrow Focus efforts on improving one equation model (k-L) for the forest
- ⇒Consideration of the thermal stability via the parametrization of the turbulence length scale

Context and purposes

Above the forest

Downstream the forest

Roughness, Upstream turbulence, Stability?

Shape of the canopy (Leaf density area)

...and purposes

Highlighting the influence of several parameters describing the forest (density, canopy shape) or the turbulence or the ABL stability => Ranking the parameters influence

Analysis will be carried out on shear and turbulence behaviors above the forest and downstream of the forest ?

Comparisons "Full scale measurements vs CFD" => Scottish wind parks from Iberdrola Renovables

The forest model => Modelling the drag forces and turbulence viscosity

Height of the first cell $< z < h_c$:

 $F_i = -\rho C_{d\nu} |\overline{u}_i| \overline{u}_i$ Drag force \propto forest density

Parametric Study

Parameters

Three geometrical parameters to describe the forest:

- Height of the canopy
- Density of the forest
- Shape of the porous volume (Leaf Area Density shape)

Three parameters to describe the <u>turbulence model</u>:

- Stability of the ABL
- Turbulence length close to the forest (Lt)
- Dissipation of the turbulence (Cµ)

Z0= 1m Z0=0.05m Forest Country side

Above or downstream the forest

Parametric Study

Parametric Study

Downstream the forest

Above the forest

	Downwind distance < 50 H		Downwind distance > 50 H	
	Influence on V ₅₀ /V ₃₀	Influence on TI ₃₀ .	Influence on V ₅₀ /V ₃₀	Influence on Tl ₃₀ .
LAD	< 0.02	0.03–0.06	< 0.02	< 0.03
Forest density	0.04-0.06	0.075	< 0.02	< 0.03
Canopy height	0.02–0.04	0.03–0.06	< 0.02	< 0.03
Turbulence length (inside)	0.02–0.04	0.03–0.06	< 0.02	< 0.03
Turbulence length (vicinity)	< 0.02	< 0.03	< 0.02	< 0.03
Turbulence length (ABL)	0.04-0.06	> 0.10	0.04-0.06	> 0.10
Dissipation parameter C_{μ}	< 0.02	0.06-0.09	< 0.02	0.03-0.06

Table 1: Dependence of Shear and Turbulence on forestry parameters - downstream the forest

	Fetch < 50 H		Fetch > 50 H	
	Influence on V ₅₀ /V ₃₀	Influence on TI ₃₀	Influence on V ₅₀ /V ₃₀	Influence on Tl ₃₀
LAD	0.02–0.04	0.03–0.06	< 0.02	< 0.03
Forest density	> 0.06	> 0.10	>0.06	> 0.10
Canopy height	0.02–0.04	0.03–0.06	< 0.02	< 0.03
Turbulence length (inside)	0.02–0.04	0.03–0.06	< 0.02	0.03–0.06
Turbulence length (vicinity)	< 0.02	< 0.03	< 0.02	< 0.03
Turbulence length (ABL)	0.04-0.06	0.06-0.09	0.04-0.06	> 0.10
Dissipation parameter C_{μ}	< 0.02	< 0.03	< 0.02	< 0.03

Table 2: Dependence of Shear and Turbulence on forestry parameters - above the forest

Case study : Full scale measurements vs CFD

Data treatment

At each met mast :

- Selection of time with Data OK and neutral conditions
 - Met station=> positive temperature (to avoid snow)
 - Time between sunrise +3H sunset-1H (to avoid night)
 - High wind speed (vertical average > 8m/s)
- >Bin by sector (30°); keep only representative sectors (>6%)
- >In each sector, compute shear (slope ratio) and turbulence intensity at the top of the mast.

Comparisons between the numerical models and the measurements in the wake of the forest

Distribution of shear errors Weak errors (negligeable) if Δ <0.02

The conclusions of the study are the followings:

- Shear discrepancies stay in the range [-0.02; +0.02] for 80 % of the Scottish Power Renewables data base
- Forest density seems to be the parameter that has both a great influence and a large imprecision. Canopy height is estimated easier than density.
- Users should calibrate firstly the density of the forest because shear depends slightly on the turbulence model (L_T , C_μ) and on LAD.
- Shear is highly dependent on the stability, so what is the stability above forest? Does the forest change the stability of the Atmospheric boundary layer?