Project Ukko: Seasonal wind speed predictions at a glance
Isadora Christel1, Drew Hemment2,3, Moritz Stefaner2, Carlo Buontempo4, Veronica Torralba1, Nube Gonzalez-Reviriego1, Marta Terrado1, Albert Soret1, Francisco Doblas-Reyes1,5

1Barcelona Supercomputing Center (BSC), Barcelona, Spain, 2Future Everything (FE), Manchester, United Kingdom, 3University of Dundee (UOD), Dundee, United Kingdom, 4Met Office, Exeter, United Kingdom, 5Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain

About Project Ukko & EUPORIAS
Project Ukko is a Barcelona Supercomputing Center and Future Everything prototype for the project EUPORIAS. It presents a novel way to spot patterns in seasonal wind prediction data. Understanding future wind conditions can become a crucial component in supporting clean energy sources and climate change resilience.

In Project Ukko, we put special emphasis on the challenge of effectively communicating probabilistic prediction values to decision-makers. We designed a novel visual device that helps informing the development of a coherent visual language for the project.

EUPORIAS is a 4-year collaborative project funded through the 7th FP, involving 24 institutions across Europe and led by the UK Met Office. The project is at the forefront of global efforts to develop climate services. It develops fully working prototypes of climate services that provide seasonal climate predictions tailored to the specific requirements of different users.

Potential users
- Energy producers: resource management strategies
- Energy traders: resource effects on markets
- Wind farm operators: planning for maintenance works
- Wind farm investors: optimize return on investments

Seasonal wind predictions
Seasonal wind predictions provide information of how likely it is that the coming season will be less, equal or more windy than normal. Project Ukko uses 10-m wind speed forecasts from the ECMWF Forecast Prediction System 4. The operational System 4 forecasts are produced at the beginning of each month with 51 ensemble members, which use slightly different initial conditions.

Post-processing
Given the sparsity of global wind observations, the ERA-Interim global reanalysis is used for validation as the best available estimate of wind. Seasonal predictions require bias correction in order to statistically resemble the observational reference and minimize forecast errors. The quality of predictions is assessed by comparing predicted values with the “observations” provided by the reanalysis. A skill score is calculated to evaluate if the model provides better information than climatology.

Probabilistic predictions
In Project Ukko, the percentage of probability that wind speed will be lower, equal and higher than normal is calculated, and the most probable category of wind speed is indicated according to the obtained results. Seasonal wind predictions are probabilistic in nature, meaning that they give the probability of occurrence of certain outcomes rather than a single ‘yes-no’ prediction. This information is crucial in order to know how useful they are to support decision-making in the wind energy sector.

www.project-ukko.net
Wind prediction for the next season. Overall, 51 different ensemble members were generated, resulting in a range of potential outcomes. The percentage of simulations in each of the terciles gives the probability for the next season to have lower, equal or higher than normal wind speed conditions.

What are they?
Seasonal wind predictions provide information of how likely it is that the coming season will be less, equal or more windy than normal. Project Ukko uses 10-m wind speed forecasts from the ECMWF Forecast Prediction System 4. The operational System 4 forecasts are produced at the beginning of each month with 51 ensemble members, which use slightly different initial conditions.

1. Molteni et al. (2011) The new ECMWF seasonal forecast system (System 4), ECMWF
2. Doblas-Reyes et al. (2005), Tellus A 57: 234-252

The research leading to these results has received funding from the EU Seventh Framework Programme FP7 (2007-2013) under grant agreement GA 308291 and the Ministerio de Economía y Competitividad (MINECO) under project CGL2013-41055-R