# Manufacturing tolerances influence on permanent magnet synchronous generator (PMSG) performance

CITCE
RESEARCH CENTRE
FOR ENERGY RESOURCES
AND CONSUMPTION

M.T. Villén, M.P. Comech, C. Lozano, MG. Cañete and E. Martin /MT. Villén Research centre for energy resources and consumption (CIRCE)

# Abstract

A permanent magnet synchronous generator (PMSG) based wind turbine has been designed and manufactured to be installed in an educational area within **SWIP project** ("New innovative solutions, components and tools for the integration of wind energy in urban and peri-urban areas").

During the design stage, several finite element studies have been performed to evaluate the PMSG behavior and calculate parameters such as no-load voltage, generated power, or cogging torque analysis among others. During this stage dimensions are "ideal" and no machine deformations are considered. However, when the real prototype is manufactured, dimensions may differ due to manufacturing tolerances, and the results obtained in the design stage can get away from those measured in the prototype. Therefore, before PMSG manufacturing stage, a previous analysis must be done considering the influence of these manufacturing tolerances and the eccentricity on the different parameters.

This study allows to identify possible differences between the PMSG behavior expected from design stage simulation studies and measurements obtained in the test bench and later when the generator is installed in the wind turbine.

# Objectives

This study aims to evaluate the effects of manufacturing tolerances and the eccentricity in the behavior of the PMSG designed within the SWIP project. In order to evaluate this influence, ripple power and cogging torque are analyzed evaluated by using a finite element software (FLUX 2D).

The influence will be evaluated and corrective actions may be taken into account before the manufacturing stage.

#### Methods

Fig.1 establishes the flowchart applied before the PMSG prototype is manufactured. Once the PMSG is designed, the manufacturing tolerances influences are evaluated. These tolerances values depending on the manufacturing process and the assembly process and are shown in Table 1

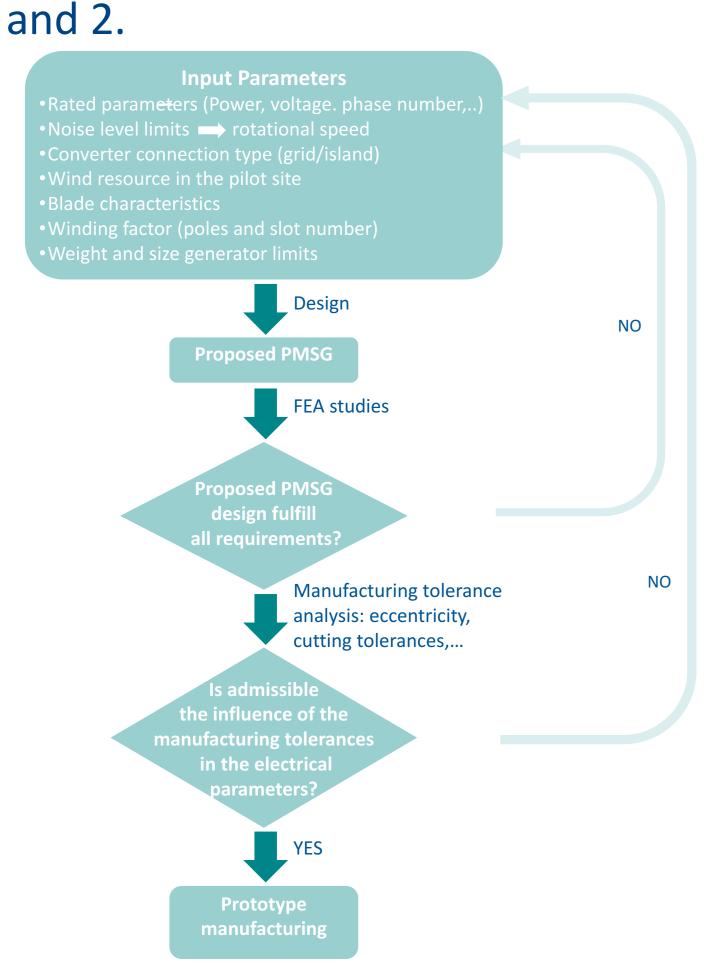
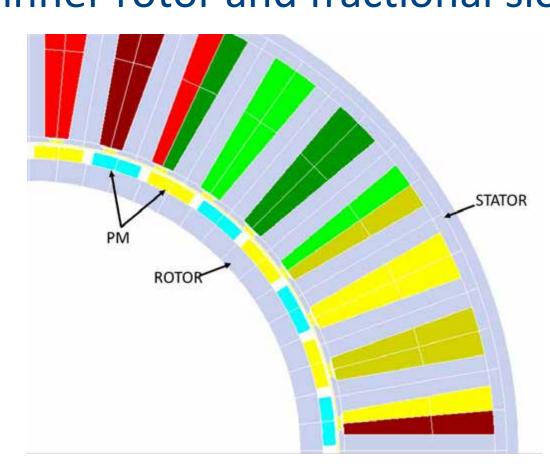



Table. 1. Cutting process tolerance values of stator/rotor.

| <b>Cutting process</b> | Tolerances |  |  |
|------------------------|------------|--|--|
| Laser cutting          | ±0.1 mm    |  |  |
| Waterjet Cutting       | ±0.1 mm    |  |  |
| Single Notching        | ±0.01 mm   |  |  |
| Punching               | ±0.01 mm   |  |  |


Table. 2. Manufacturing process tolerance values of PM.

| Manufacturing process           | Tolerances |
|---------------------------------|------------|
| Magnetization angle (β)         | ±4º        |
| Remanence<br>magnetization (Br) | ±0.02 T    |
| Dimensional tolerances          | ±0.02 mm   |

Fig. 1 Flowchart of PMSG design process.

# Experimental setup

The generator analyzed is a radial flux PMSG with surface mounted magnets, inner rotor and fractional slot winding.



| Fig. | 2 | 2D | Finite | element | model | PMSG. |
|------|---|----|--------|---------|-------|-------|

|                  | Values | Units  |
|------------------|--------|--------|
| Rated voltage    | 400    | V      |
| Rotational speed | 120    | r.p.m. |
| Phase number     | 3      |        |
| Slot number      | 36     |        |
| Pole number      | 32     |        |

Table. 3. PMSG characteristics.

Table. 3. Tolerances analyzed during the study.

|                                 | Minimum value         | Rated value    | Maximum value         | Units    |
|---------------------------------|-----------------------|----------------|-----------------------|----------|
| Slot opening (SO)               | SO-0.1                | SO             | SO+0.1                | mm       |
| Magnet length (LM)              | LM-0.2                | LM             | LM+0.2                | mm       |
| Magnet angle $(\theta_m)$       | $\theta_{\rm m}$ -0.3 | $\theta_{m}$   | $\theta_{\rm m}$ +0.3 | Ō        |
| Magnetization angle (β)         | β-4                   | β              | β+4                   | <u>o</u> |
| Remanence<br>magnetization (Br) | B <sub>r</sub> -0.02  | B <sub>r</sub> | B <sub>r</sub> +0.02  | Т        |
| Static Eccentricity (e)         | 25 %gap               | 0              | 50% gap               | mm       |
| Dynamic Eccentricity            |                       | 0              | 0,1                   | mm       |

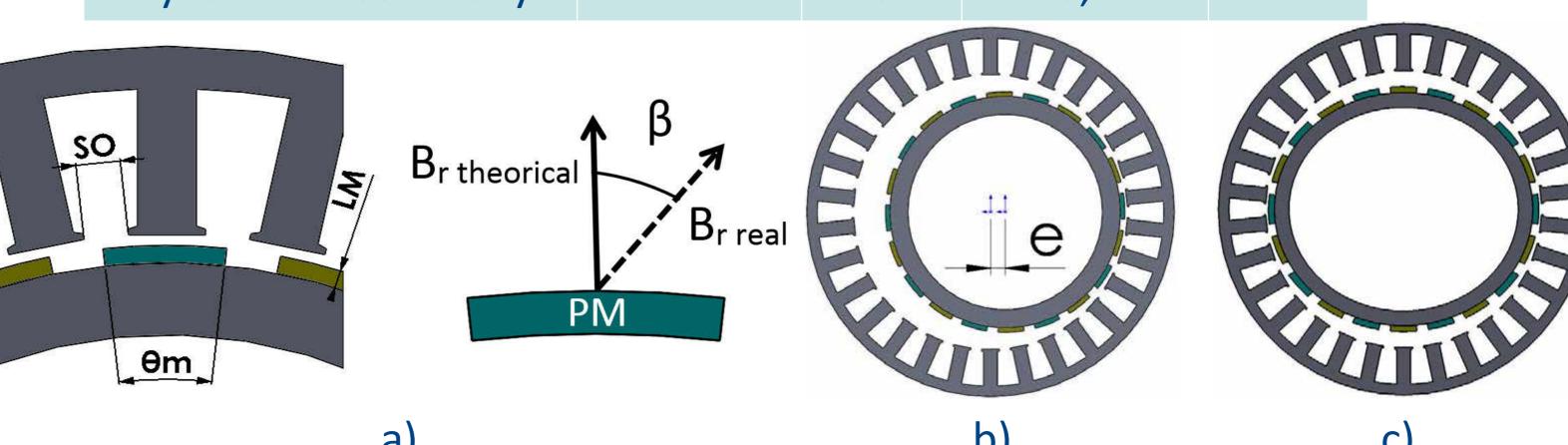



Fig. 3 Graphic representation of the tolerances under study. a) Dimensional and magnetic tolerances; b) Static eccentricity; c) Dynamic eccentricity.

## Results




Fig.4 Manufacturing tolerance influence in Cogging torque (%).

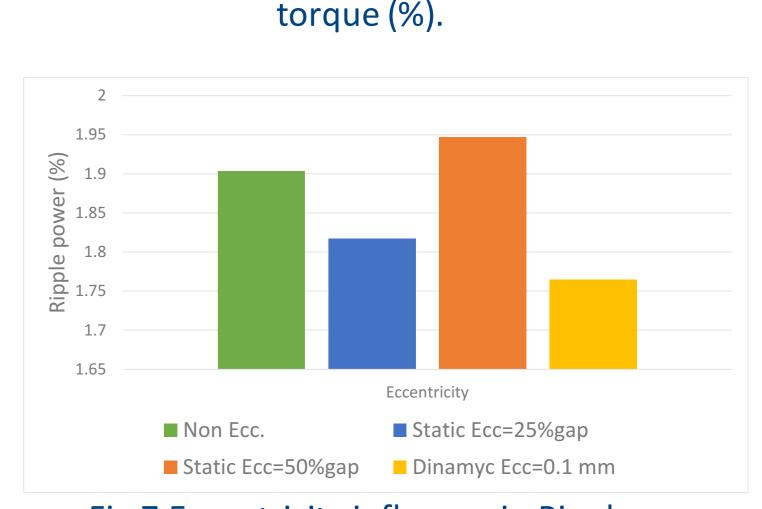



Fig.5 Eccentricity influence in Cogging

Fig.6 Manufacturing tolerance influence in Ripple power (%).

Fig.7 Eccentricity influence in Ripple power (%).

### Conclusions

<u>\$</u> 2.000

- Manufacturing tolerances affect PMSG behavior and should be taking into account during the design stage.
- Length magnet and magnet angle tolerances have an important influence in cogging torque and ripple power.
- > Static eccentricity influence in the cogging torque and ripple power is higher than the dynamic eccentricity.
- Cogging torque and power ripple are barely affected by the magnetization angle.
- Manufacturing tolerances have higher influence in cogging torque and ripple power variation than static and dynamic eccentricity.

### References

- 1. I. Coenen et all, " Evaluating the influence of manufacturing tolerances in permanent magnet synchronous machines", COMPEL, Vol. 32, №5, pp. 1552-1566, 2013.
- Lovrenc Gasparin, Rastko Fiser, "Cogging torque sensitivity to permanent magnet tolerance combinations", Archieves of electrical enginnering, Vol. 62, Issue 3, pp. 449-461, 2013.
- 3. V. Simón-Sempere, M. Burgos-Payán and J.R. Cerquides-Bueno, "Influence of Manufacturing Tolerances on the Electromotive Force in Permanent-Magnet Motors", IEEE Transactions on Magnetics, Vol. 49, Issue 11, pp. 5522-5532, 2013.
- 4. I. Coenen, M. van der Giet, and K. Hameyer, "Manufacturing Tolerances: Estimation and Prediction of Cogging Torque Influenced by Magnetization Faults", IEEE Transactions on Magnetics, Vol. 48, Issue 5, pp. 1932-1936, 2012.



