An Innovative Umbrella-type Rotor of Horizontal Axis

Wind Turbine to Regulate Power and Reduce Wind Thrust

Wei Xie, Pan Zeng, Liping Lei
Key Laboratory for Advanced Materials Processing Technology of MOE,
Department of Mechanical Engineering, Tsinghua University, China

Abstract

- Innovative umbrella-type rotor is proposed, aiming at active power regulation and wind thrust reduction.
- Corresponding folding mechanism is designed to refine loads on hub. Truss-frame structure principle is sufficiently used.
- Wind tunnel experiments are conducted to offer supporting data.
- Multi-body dynamic analysis of umbrella-type rotor is conducted.
- Umbrella-type rotor is found to effectively regulate power and wind thrust. The innovative rotor bears lower wind thrust than the pitch regulated type.
- Torques and moments acting on the hub are considerably reduced and bending moment is converted to the tension mode.

Umbrella-type rotor concept

Innovative rotor concept
- Blades is folding upstream at hub.
- Folding axis inclines to blade extension direction, tilting down to the rotor revolution direction.
- Pitching and coning coupled.
- Rotor coning leads to extra wind thrust reduction.

Folding mechanism
- Inclined hinge connects blade and hub.
- Screw rod is fixed on hub center line, driven by the motor.
- Link rod connects blade root and slider with spherical joints.
- Slider is driven to move along the screw rod and blades are folded.
- Bending moment on hub is converted to link rod tension and screw rod compression.
- The patent authorization is in process [1].

Wind tunnel experiment

Experiment setup
- Rotor test system: measure rotor mechanical power.
- Rotor is evaluated by Cp (power coefficient) and Ct (thrust coefficient).

Blade profile and tested rotor
- Blade: scaled down “NREL PHASE VI” blade with a length of 0.3 m, pitched at 18.18°.
- Rotor: 3 blades with a diameter of 0.65 m.
- Inclined angle: 30°, 45° and 60° and pitch regulated rotor.

Experiment scheme
- Wind speed: 4 m/s; Hinge incline angle: 45°.
 - Rotor potential to regulate Cp and Ct.
- Speed: 200 RPM (const.); Power: 0.521 watt (const.);
 Rotor: incline angle of 30°, 45°, 60° and pitch regulated; Wind speed: increasing from 4 m/s.
 - Fold angle variation along wind speed and Cp regulation sensitivity comparison.
 - Wind thrust comparison between umbrella-type and pitch regulated rotor.

Wind tunnel experiment results

- Drastic drop of both Cp and Ct, and a shift of TSR to lower range.
 - Potential to reduce power and wind thrust, and to limit speed in high wind speed.

Constant power output and Cp regulation sensitivity
- Under increasing wind speed condition, fold angle adjustment is less in case of larger incline angle to limit power output growth.
- Larger incline angle leads to higher Cp regulation sensitivity.
 - Incline angle magnitude dominates rotor power regulation sensitivity.

Case study: rotor multi-body dynamic analysis

- Analyzed rotor consists of 3 “NREL PHASE VI” blades which are pitched at 3°.
- Rotor hinge incline angle is 45° and fold angle is 20°. Revolution rate is 71.63 RPM and wind speed is 10 m/s; Incl.33 m, Incl.515 m, K=0.54 m.
- Wind loads are calculated using the code developed by the authors. Blade gravities and centrifugal forces are obtained based on data provided in Ref. [2]. The loads are applied to each blade which is divided into 11 elements. The multi-body dynamic analysis is conducted using ADAMS software.

<table>
<thead>
<tr>
<th>Inclined hinge</th>
<th>Inclined hinge</th>
<th>Inclined hinge</th>
</tr>
</thead>
<tbody>
<tr>
<td>37.91 N</td>
<td>5585 N</td>
<td>4775 N</td>
</tr>
<tr>
<td>633 N</td>
<td>534 N</td>
<td>0 N</td>
</tr>
<tr>
<td>782 N</td>
<td>77 N</td>
<td>1381 N</td>
</tr>
<tr>
<td>5579 N</td>
<td>5493 N</td>
<td>4775 N</td>
</tr>
<tr>
<td>3506 N</td>
<td>2902 N</td>
<td>2826 N</td>
</tr>
<tr>
<td>1361 N</td>
<td>96 N</td>
<td>4733 N</td>
</tr>
<tr>
<td>5985 N</td>
<td>6791 N</td>
<td>610 N</td>
</tr>
<tr>
<td>5985 N</td>
<td>610 N</td>
<td>8 N</td>
</tr>
<tr>
<td>6791 N</td>
<td>3322 N</td>
<td>4733 N</td>
</tr>
<tr>
<td>5985 N</td>
<td>610 N</td>
<td>8 N</td>
</tr>
<tr>
<td>5985 N</td>
<td>610 N</td>
<td>8 N</td>
</tr>
<tr>
<td>6791 N</td>
<td>3322 N</td>
<td>4733 N</td>
</tr>
</tbody>
</table>

- Moments on inclined hinge are much less than that on fixed connector.
 - Bending is converted to link rod tension which is between 31466 N to 17344 N.
 - The folding mechanism well refines the load distribution on hub.

Conclusions

- An innovative umbrella-type rotor is proposed. Experiment result indicates that innovative rotor is capable in regulating Cp and Ct.
- Constant speed of 200 RPM and power output of 0.521 watt in increasing wind speed are achieved with the umbrella-type rotor models.
- Innovative rotor is more desirable in reducing wind thrust than pitch regulated type.
- Rotor coning leads to extra wind thrust reduction.
- Inclined angle magnitude dominates rotor power regulation sensitivity.
- Folding mechanism for umbrella-type rotor is proposed. Bending moment on hub is reduced and converted to link rod tension mode.

Acknowledgement

- The authors gratefully acknowledge the support of the National Natural Science Foundation of China (No. 51575296).

Reference