

Wei Xie, Pan Zeng, Liping Lei

Key Laboratory for Advanced Materials Processing Technology of MOE,

Department of Mechanical Engineering, Tsinghua University, China

Abstract

PO.081

- Innovative umbrella-type rotor is proposed, aiming at active power regulation and wind thrust reduction.
- Corresponding folding mechanism is designed to refine loads on hub. Truss-frame structure principle is sufficiently used.
- Wind tunnel experiments are conducted to offer supporting data.
- Multi-body dynamic analysis of umbrella-type rotor is conducted.
- Umbrella-type rotor is found to effectively regulate power and wind thrust. The innovative rotor bears lower wind thrust than the pitch regulated type.
- Torques and moments acting on the hub are considerably reduced and bending moment is converted to the tension mode.

Umbrella-type rotor concept

Wind tunnel experiment results

- Drastic drop of both Cp and Ct, and a shift of TSR to lower range.
- → Potential to reduce power and wind thrust, and to limit speed in high wind speed.

Constant power output and Cp regulation sensitivity

- Under increasing wind speed condition, fold angle adjustment is less in case of larger incline angle to limit power output growth.
- Larger incline angle leads to higher Cp regulation sensitivity.
- → Incline angle magnitude dominates rotor power regulation sensitivity.

Innovative rotor concept

- Blades is folding upstream at hub.
- Folding axis inclines to blade extension direction, tilting down to the rotor revolution direction.
- Pitching and coning coupled.
- Rotor coning leads to extra wind thrust reduction.

Folding mechanism

- Inclined hinge connects blade and hub.
- Screw rod is fixed on hub center line, driven by the motor.
- Link rod connects blade root and slider with spherical joints.
- Slider is driven to move along the screw rod and blades are folded.
- Bending moment on hub is converted to link rod tension and screw rod compression.
- The patent authorization is in process [1].

Fig. 1 Concept of innovative umbrella-type rotor

Fig. 6 Fold angle variation along wind speed to maintain constant power

Wind thrust comparison

- Under identical power output condition, wind thrust on umbrella-type turbine is less than that on pitch regulated type.
- Smaller incline angle is, less wind thrust the umbrella-type turbine bears.
- Rotor coning leads to extra wind thrust \rightarrow reduction.

Fig. 7 Umbrella-type rotor Cp regulation sensitivity

Case study: rotor multi-body dynamic analysis

Analyzed rotor consists of 3 "NREL PHASE VI" blades which are pitched at 3°. Rotor hinge incline angle is 45° and fold angle is 20°. Revolution rate is 71.63 RPM and wind speed is 10 m/s. I=0.33 m, J=0.515 m, K=0.54 m. Wind loads are calculated using the code developed by the authors. Blade gravities and centrifugal forces are obtained based on data provided in Ref. [2]. The loads are applied to each blade which is divided into 11 elements. The multi-body dynamic analysis is conducted using ADAMS software.

Wind tunnel experiment

Experiment setup

- Rotor test system: measure rotor mechanical power.
- Rotor is evaluated by Cp (power coefficient) and Ct (thrust coefficient).

Blade profile and tested rotor

- Blade: scaled down "NREL PHASE VI " blade with a length of 0.3 m, pitched at 18.18°.
- Rotor: 3 blades with a diameter of 0.65 m.
- Incline angle: 30°, 45° and 60° and pitch regulated rotor.

Experiment scheme

- Wind speed: 4 m/s; Hinge incline angle: 45° . \rightarrow rotor potential to regulate Cp and Ct.
- Speed: 200 RPM (const.); Power: 0.521 watt (const.); Rotor: incline angle of 30°, 45°, 60° and pitch regulated; Wind speed: increasing from 4 m/s.
 - \rightarrow Fold angle variation along wind speed and Cp regulation sensitivity comparison.
 - \rightarrow Wind thrust comparison between umbrella-type and pitch regulated rotor.

Fig. 3 Rotor test system

incline angle: 60°; fold angle: 40°

Fig. 4 Tested umbrella-type rotor

Tab. 1 Force components on inclined hinge and fixed connector

	Fx	Fy	Fz	Tx	Ту	Tz	Inclined hinge
Inclined hinge	-6791 N to -4733 N	-5985 N to -5493 N	4775 N to 5579 N	0 Nm	-610 Nm to 71 Nm	-534 Nm to 1361 Nm	Fz Ty
Fixed connector	4269 N to 5556 N	4540 N to 5827 N	-258 N	-3362 Nm to -2901 Nm	2862 Nm to 3322 Nm	-8 Nm to 1934 Nm	Same

- Moments on inclined hinge are much less than that on fixed connector.
- Bending is converted to link rod tension which is between 14966 N to 17344 N.
- → The folding mechanism well refines the load distribution on hub.

Conclusions

- An innovative umbrella-type rotor is proposed. Experiment result indicates that innovative rotor is capable in regulating Cp and Ct.
- Constant speed of 200 RPM and power output of 0.521 watt in increasing wind speed are achieved with the umbrella-type rotor models.

Wind tunnel experiment results

Power coefficient and thrust coefficient

Fig. 5 Umbrella-type rotor performance: (a) Cp variation along TSR and (b) Ct variation along TSR

- Innovative rotor is more desirable in reducing wind thrust than pitch regulated type. Rotor coning leads to extra wind thrust reduction.
- Incline angle magnitude dominates rotor power regulation sensitivity.
- Folding mechanism for umbrella-type rotor is proposed. Bending moment on hub is reduced and converted to link rod tension mode.

Acknowledgement

The authors gratefully acknowledge the support of the National Natural Science Foundation of China (No. 51575296).

Reference

[1] Chinese invention patent: 201510917639.0 (authorization in process). [2] Jonkman JM. "Modeling of the UAE wind turbine for refinement of FAST_AD". NREL (National Renewable Energy Laboratory) technical report, NREL/TP-500-34755; 2003.

windeurope.org/summit2016

#windeuropesummit2016

