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Improve efficiency of O&M tasks by mean of prognosis analysis of SCADA
data in order to extract and test the found failure patterns and therefore:

• Reduce WTG down-time.

• Detect critical faults in earlier stages.

• Selection and visualization of the key indicators of failure over the time.

• Improve the prediction models accuracy by the selection.

• Reduce computation time and problem dimensionality.

One of the key steps in failure prediction using machine learning classifiers is
to choose an optimal or near optimal set of inputs from tens to hundreds of
variables. This task can be achieved with the implementation of
unsupervised-supervised algorithms that aim to find out the most relevant
and shortest set of variables related with the failure. Therefore, with the aim
of study and select the best algorithm or algorithms of feature selection, we
present a thorough study of the state of the art of available techniques
when applied to the specific area of wind turbine Operation &
Maintenance. In order to visualize the behavior of the selected variables we
have choose sets of three variables for fault in order to make 3D plot
animations. Those provide intuitive and powerful insights about the
behavior of the WTG until 21 days before failure. This helps us to confirm
and improve the models used for failure prediction in Smartive platform.
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• Feature	selection	algorithms	improve	the	model	accuracy	over	the	use	of	all	

features	as	input,	reducing	the	computation	time	and	the	input	dimension	
space.

• The	3D	selected	input	space	shows	“Healthy”	and	“alarms-failure”	zones.	
This	was	seen	for	the	5	different	WTG	that	are	the	same	model.	Even	though	
the	selected	inputs	were	not	exactly	the	same	among	the	WTGs,	they	always	
bellowed	to	the	same	WTG’s	system.

• The	use	of	exhaustive	methods	are	better	with	reduced	set	of	inputs,	but	
when	the	set	of	inputs	grows	the	time	increase	exponentially	and	it	becomes	
a	non	practical	solution.

• The	obtained	results	show	the	viability	of	automating	one	of	the	most	critic	
steps	when	building	a	classifier	for	failure	prediction	in	wind	turbines.

The process starts with the application of the feature selection algorithm over the SCADA data. A total of 8 algorithms were tested, among them:

Conditional mutual information[1], Double input symmetrical relevance[2], Min-redundancy Max-relevance[3], Conditional mutual information maximization[4], Joint mutual
information[5], Interaction Capping[6], Mutual information feature selection[7] and quasi-optimal exhaustive method.

SCADA readings of a wind 
turbine with 303 features x 88k 
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Human experts filters the 
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The average computation time on reduced subset of 36 features x 88k entries:

• Exhaustive	feature	selection	algorithms:	1-3	features	exhaustive		~1h	x	WTG,	3-6	features	top	500	histogram	~2h	
x	WTG.

• Non-exhaustive	feature	selection	algorithms:	1-3	~1min	x	WTG,	3-6	~5min	x	WTG.

3D plot that displays the variable converge before the alarm event (red zone).Accuracy results based on the median of 100 KNN classifier iterations for a Main Bearing alarm.


